IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v108y2010i3p352-354.html
   My bibliography  Save this article

The number of pure strategy Nash equilibria in random multi-team games

Author

Listed:
  • Stanford, William

Abstract

We show that in random multi-team games, large numbers of pure strategy Nash equilibria are highly probable when the number of teams, the size of teams, or pure strategy set cardinalities are large.

Suggested Citation

  • Stanford, William, 2010. "The number of pure strategy Nash equilibria in random multi-team games," Economics Letters, Elsevier, vol. 108(3), pages 352-354, September.
  • Handle: RePEc:eee:ecolet:v:108:y:2010:i:3:p:352-354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(10)00229-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    2. Roberts, David P., 2005. "Pure Nash equilibria of coordination matrix games," Economics Letters, Elsevier, vol. 89(1), pages 7-11, October.
    3. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    4. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.
    2. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    3. Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2021. "Pure Nash Equilibria and Best-Response Dynamics in Random Games," Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1552-1572, November.
    4. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    5. Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    6. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
    7. Arieli, Itai & Babichenko, Yakov, 2016. "Random extensive form games," Journal of Economic Theory, Elsevier, vol. 166(C), pages 517-535.
    8. Mimun, Hlafo Alfie & Quattropani, Matteo & Scarsini, Marco, 2024. "Best-response dynamics in two-person random games with correlated payoffs," Games and Economic Behavior, Elsevier, vol. 145(C), pages 239-262.
    9. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    10. Szabó, György & Borsos, István & Szombati, Edit, 2019. "Games, graphs and Kirchhoff laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 416-423.
    11. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    12. Andrea Collevecchio & Tuan-Minh Nguyen & Ziwen Zhong, 2024. "Finding pure Nash equilibria in large random games," Papers 2406.09732, arXiv.org, revised Aug 2024.
    13. Ben Amiet & Andrea Collevecchio & Kais Hamza, 2020. "When "Better" is better than "Best"," Papers 2011.00239, arXiv.org.
    14. Andrea Collevecchio & Hlafo Alfie Mimun & Matteo Quattropani & Marco Scarsini, 2024. "Basins of Attraction in Two-Player Random Ordinal Potential Games," Papers 2407.05460, arXiv.org.
    15. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    16. McLennan, Andrew & Park, In-Uck, 1999. "Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 26(1), pages 111-130, January.
    17. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    18. Collevecchio, Andrea & LiCalzi, Marco, 2012. "The probability of nontrivial common knowledge," Games and Economic Behavior, Elsevier, vol. 76(2), pages 556-570.
    19. J. M. Peterson & M. A. Simaan, 2008. "Probabilities of Pure Nash Equilibria in Matrix Games when the Payoff Entries of One Player Are Randomly Selected," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 401-410, May.
    20. Thomas Quint & Martin Shubik, 1994. "On the Number of Nash Equilibria in a Bimatrix Game," Cowles Foundation Discussion Papers 1089, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:108:y:2010:i:3:p:352-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.