IDEAS home Printed from
   My bibliography  Save this article

The probability of nontrivial common knowledge


  • Collevecchio, Andrea
  • LiCalzi, Marco


We study the probability that two or more agents can attain common knowledge of nontrivial events when the size of the state space grows large. We adopt the standard epistemic model where the knowledge of an agent is represented by a partition of the state space. Each agent is endowed with a partition generated by a random scheme consistent with his cognitive capacity. Assuming that agentsʼ partitions are independently distributed, we prove that the asymptotic probability of nontrivial common knowledge undergoes a phase transition. Regardless of the number of agents, when their cognitive capacity is sufficiently large, the probability goes to one; and when it is small, it goes to zero. Our proofs rely on a graph-theoretic characterization of common knowledge that has independent interest.

Suggested Citation

  • Collevecchio, Andrea & LiCalzi, Marco, 2012. "The probability of nontrivial common knowledge," Games and Economic Behavior, Elsevier, vol. 76(2), pages 556-570.
  • Handle: RePEc:eee:gamebe:v:76:y:2012:i:2:p:556-570
    DOI: 10.1016/j.geb.2012.07.014

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    2. Hellman, Ziv & Samet, Dov, 2012. "How common are common priors?," Games and Economic Behavior, Elsevier, vol. 74(2), pages 517-525.
    3. Geanakoplos, John, 1994. "Common knowledge," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 40, pages 1437-1496 Elsevier.
    4. Marco LiCalzi & Oktay Surucu, 2012. "The Power of Diversity over Large Solution Spaces," Management Science, INFORMS, vol. 58(7), pages 1408-1421, July.
    5. Dimitri, Nicola, 1993. "Learning partitions," Economics Letters, Elsevier, vol. 42(2-3), pages 195-199.
    6. John Geanakoplos, 1992. "Common Knowledge," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 53-82, Fall.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marco LiCalzi & Lucia Milone, 2012. "Talent management in triadic organizational architectures," Working Papers 4, Department of Management, Università Ca' Foscari Venezia.

    More about this item


    Epistemic game theory; Random partitions; Meet of partitions;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:76:y:2012:i:2:p:556-570. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.