IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.10758.html
   My bibliography  Save this paper

Pure Nash Equilibria and Best-Response Dynamics in Random Games

Author

Listed:
  • Ben Amiet
  • Andrea Collevecchio
  • Marco Scarsini
  • Ziwen Zhong

Abstract

In finite games mixed Nash equilibria always exist, but pure equilibria may fail to exist. To assess the relevance of this nonexistence, we consider games where the payoffs are drawn at random. In particular, we focus on games where a large number of players can each choose one of two possible strategies, and the payoffs are i.i.d. with the possibility of ties. We provide asymptotic results about the random number of pure Nash equilibria, such as fast growth and a central limit theorem, with bounds for the approximation error. Moreover, by using a new link between percolation models and game theory, we describe in detail the geometry of Nash equilibria and show that, when the probability of ties is small, a best-response dynamics reaches a Nash equilibrium with a probability that quickly approaches one as the number of players grows. We show that a multitude of phase transitions depend only on a single parameter of the model, that is, the probability of having ties.

Suggested Citation

  • Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2019. "Pure Nash Equilibria and Best-Response Dynamics in Random Games," Papers 1905.10758, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:1905.10758
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.10758
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pangallo, Marco & Farmer, J. Doyne & Heinrich, Torsten, "undated". "Best reply structure and equilibrium convergence in generic games," INET Oxford Working Papers 2017-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Mar 2018.
    2. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    3. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    4. Stanford, William, 1997. "On the distribution of pure strategy equilibria in finite games with vector payoffs," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 115-127, April.
    5. William Stanford, 1996. "The Limit Distribution of Pure Strategy Nash Equilibria in Symmetric Bimatrix Games," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 726-733, August.
    6. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    7. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.
    8. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    9. repec:cup:cbooks:9781316779309 is not listed on IDEAS
    10. Roughgarden,Tim, 2016. "Twenty Lectures on Algorithmic Game Theory," Cambridge Books, Cambridge University Press, number 9781316624791.
    11. Roughgarden,Tim, 2016. "Twenty Lectures on Algorithmic Game Theory," Cambridge Books, Cambridge University Press, number 9781107172661.
    12. Pangallo, Marco & Farmer, J. Doyne & Heinrich, Torsten, "undated". "Best reply structure and equilibrium convergence in generic games," INET Oxford Working Papers 2017-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Mar 2018.
    13. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Amiet & Andrea Collevecchio & Kais Hamza, 2020. "When "Better" is better than "Best"," Papers 2011.00239, arXiv.org.
    2. J'anos Flesch & Arkadi Predtetchinski & Ville Suomala, 2021. "Random perfect information games," Papers 2104.10528, arXiv.org.
    3. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2021.
    2. Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    3. Szabó, György & Borsos, István & Szombati, Edit, 2019. "Games, graphs and Kirchhoff laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 416-423.
    4. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    5. Heinrich, Torsten & Wiese, Samuel, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," INET Oxford Working Papers 2020-24, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    6. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.
    7. Samuel C. Wiese & Torsten Heinrich, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," Papers 2011.01052, arXiv.org.
    8. Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
    9. Stanford, William, 2010. "The number of pure strategy Nash equilibria in random multi-team games," Economics Letters, Elsevier, vol. 108(3), pages 352-354, September.
    10. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
    11. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    12. Arieli, Itai & Babichenko, Yakov, 2016. "Random extensive form games," Journal of Economic Theory, Elsevier, vol. 166(C), pages 517-535.
    13. Mu'alem, Ahuva & Schapira, Michael, 2018. "Setting lower bounds on truthfulness," Games and Economic Behavior, Elsevier, vol. 110(C), pages 174-193.
    14. Awaya, Yu & Krishna, Vijay, 2019. "Communication and cooperation in repeated games," Theoretical Economics, Econometric Society, vol. 14(2), May.
    15. Konstantinos Georgalos & Indrajit Ray & Sonali SenGupta, 2020. "Nash versus coarse correlation," Experimental Economics, Springer;Economic Science Association, vol. 23(4), pages 1178-1204, December.
    16. Ben Amiet & Andrea Collevecchio & Kais Hamza, 2020. "When "Better" is better than "Best"," Papers 2011.00239, arXiv.org.
    17. Tim Roughgarden, 2018. "Complexity Theory, Game Theory, and Economics: The Barbados Lectures," Papers 1801.00734, arXiv.org, revised Feb 2020.
    18. Tim Roughgarden & Inbal Talgam-Cohen, 2018. "Approximately Optimal Mechanism Design," Papers 1812.11896, arXiv.org, revised Aug 2020.
    19. Austin Knies & Jorge Lorca & Emerson Melo, 2020. "A Recursive Logit Model with Choice Aversion and Its Application to Transportation Networks," Papers 2010.02398, arXiv.org, revised Oct 2021.
    20. Collins, Sean M. & James, Duncan & Servátka, Maroš & Vadovič, Radovan, 2020. "Attainment of Equilibrium: Marshallian Path Adjustment and Buyer Determinism," MPRA Paper 104103, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.10758. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.