IDEAS home Printed from https://ideas.repec.org/p/tea/wpaper/1205.html
   My bibliography  Save this paper

Modelling the Marginal Abatement Cost of Mitigating Nitrogen Loss from Agricultural Land

Author

Listed:
  • Aksana Chyzheuskaya

    (Rural Economy and Development Programme, Teagasc, Athenry, Co. Galway, Ireland)

  • Cathal O'Donoghue

    (Rural Economy and Development Programme, Teagasc, Athenry, Co. Galway, Ireland)

  • Cathal Buckley

    (Rural Economy and Development Programme, Teagasc, Athenry, Co. Galway, Ireland)

  • Mary Ryan

    (Rural Economy and Development Programme, Teagasc, Athenry, Co. Galway, Ireland)

  • Stuart Green

    (Rural Economy and Development Programme, Teagasc, Athenry, Co. Galway, Ireland)

Abstract

With the deadline identified by the Water Framework Directive (2000/60/EC) approaching in 2015 there is increasing pressure on policymakers to introduce new regulations to achieve water quality targets. Agriculture is one of the contributors of diffuse pollution entering watercourses and will come under pressure to reduce pollutant loads. This paper produces Marginal Abatement Cost (MAC) Curves for eight policy measures that could potentially reduce nitrate leaching from agricultural land on Irish dairy farms. These include: 1) reduction of fertiliser application by 10%; 2) reduction of fertiliser application by 20%; 3) livestock unit reduction to limit organic N to 170 kg ha-1; 4) reduction of livestock units by 20%; 5) change of feed mix to reduce cow dietary N intake; 6) fencing off watercourses to introduce a buffer zone; 7) improved dairy cow genetic merit by introducing higher performing dairy breeds; 8) more efficient slurry application. Results from this study indicate that there will be reductions in farm gross margins across nearly all policy measures. However, MAC and the ranking of MAC vary across individual farms and aggregate MAC does not reflect the heterogeneity of impacts across individual farms. This paper shows that any measure introduced in a “one size fits all command-control” fashion will not yield efficient economic results.

Suggested Citation

  • Aksana Chyzheuskaya & Cathal O'Donoghue & Cathal Buckley & Mary Ryan & Stuart Green, 2012. "Modelling the Marginal Abatement Cost of Mitigating Nitrogen Loss from Agricultural Land," Working Papers 1205, Rural Economy and Development Programme,Teagasc.
  • Handle: RePEc:tea:wpaper:1205
    as

    Download full text from publisher

    File URL: http://www.teagasc.ie/rural-economy/downloads/workingpapers/12wpre05.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiridoe, Emmanuel K. & Weersink, Alfons, 1998. "Marginal Abatement Costs Of Reducing Groundwater-N Pollution With Intensive And Extensive Farm Management Choices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 27(2), pages 1-17, October.
    2. Moran, Dominic & MacLeod, Michael J. & Wall, Eileen & Eory, Vera & McVittie, Alistair & Barnes, Andrew Peter & Rees, Bob & Smith, Peter & Moxey, Andrew, 2009. "Marginal abatement cost curves for UK agriculture, forestry, land-use and land-use change sector out to 2022," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51065, Agricultural Economics Society.
    3. Carlo Fezzi & Dan Rigby & Ian J. Bateman & David Hadley & Paulette Posen, 2008. "Estimating the range of economic impacts on farms of nutrient leaching reduction policies," Agricultural Economics, International Association of Agricultural Economists, vol. 39(2), pages 197-205, September.
    4. Merz, Joachim, 1993. "Microsimulation as an Instrument to Evaluate Economic and Social Programmes," MPRA Paper 7236, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chyzheuskaya, Aksana & O'Donoghue, Cathal & O'Neill, Stephen, 2014. "Using a farm micro-simulation model to evaluate the impact of the nitrogen reduct," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 3(4), pages 1-11.
    2. Amon-Armah, Frederick & Yiridoe, Emmanuel K. & Hebb, Dale & Jamieson, Rob, 2013. "Nitrogen abatement cost comparison for cropping systems under alternative management choices," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149915, Agricultural and Applied Economics Association.
    3. Boxall, Peter C. & Weber, Marian & Perger, Orsolya & Cutlac, Marius & Samarawickrema, Antony, 2008. "Results from the Farm Behaviour Component of the Integrated Economic-Hydrologic Model for the Watershed Evaluation of Beneficial Management Practices Program," Project Report Series 116268, University of Alberta, Department of Resource Economics and Environmental Sociology.
    4. Pérez Domínguez, Ignacio & Britz, Wolfgang & Holm-Müller, Karin, 2009. "Trading schemes for greenhouse gas emissions from European agriculture: A comparative analysis based on different implementation options," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 90(3).
    5. Innocent Bakam & Robin Matthews, 2009. "Emission trading in agriculture: a study of design options using an agent-based approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 755-776, December.
    6. Lally, Breda & van Rensburg, Tom M., 2014. "Reducing nitrogen applications on Irish dairy farms: effectiveness and efficiency of different strategies," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(01), October.
    7. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    8. Yiridoe, Emmanuel K. & Amon-Armah, Frederick & Hebb, Dale & Jamieson, Rob, 2013. "Eco-efficiency of Alternative Cropping Systems Managed in an Agricultural Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150357, Agricultural and Applied Economics Association.
    9. Merz, Joachim, 1995. "MICSIM : Concept, Developments and Applications of a PC-Microsimulation Model for Research and Teaching," MPRA Paper 16029, University Library of Munich, Germany.
    10. Parker, Doug, 2000. "Controlling agricultural nonpoint water pollution: costs of implementing the Maryland Water Quality Improvement Act of 1998," Agricultural Economics, Blackwell, vol. 24(1), pages 23-31, December.
    11. Emmanuel K. Yiridoe & Frederick Amon-Armah & Dale Hebb & Rob Jamieson, 2017. "Eco-efficient choice of cropping system for reducing nitrate-N leaching in an agricultural watershed," Journal of Bioeconomics, Springer, vol. 19(2), pages 201-221, July.
    12. Vera Eory & Cairistiona F. E. Topp & Adam Butler & Dominic Moran, 2018. "Addressing Uncertainty in Efficient Mitigation of Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 627-645, September.
    13. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    14. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    15. Nadine Turpin & Philippe Bontems & Gilles Rotillon, 2004. "Lutte contre la pollution diffuse sur un bassin d’élevage : comparaison d’instruments de régulation en présence d’asymétrie d’information," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 72, pages 5-31.
    16. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    17. Carlo Fezzi & Michael Hutchins & Dan Rigby & Ian J. Bateman & Paulette Posen & David Hadley, 2010. "Integrated assessment of water framework directive nitrate reduction measures," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 123-134, March.
    18. Carlo Fezzi & Ian Bateman & Tom Askew & Paul Munday & Unai Pascual & Antara Sen & Amii Harwood, 2014. "Valuing Provisioning Ecosystem Services in Agriculture: The Impact of Climate Change on Food Production in the United Kingdom," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(2), pages 197-214, February.
    19. Meyer-Aurich, Andreas & Truggelmann, Lothar, 2002. "Finding the optimal balance between economical and ecological demands on agriculture – research results and model calculations for a Bavarian experimental farm," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125139, Australian Agricultural and Resource Economics Society.
    20. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tea:wpaper:1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John Lennon (email available below). General contact details of provider: https://edirc.repec.org/data/reteaie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.