IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/548.html
   My bibliography  Save this paper

Optimal CO2 abatement and technological change. Should emission taxes start high in order to spur R&D?

Author

Listed:

Abstract

Many European politicians argue that since technological development is needed to solve the climate problem, the EU should take the lead and set tougher emission targets than what is required by the Kyoto protocol. Moreover, emission trading with other countries outside EU should be limited so as to keep emission quota prices high. However, the policy of spurring R&D by setting high emission taxes today is not suggested by the literature on climate change and R&D. In this paper we investigate this result further by modeling innovation activity explicitly. In our model both the amount of R&D and the amount of CO2 abatement are decided in a decentralized way by the market as a response to an emission tax. Moreover, we introduce three distinct failures in the market for new innovations; monopolistic pricing behavior, insufficient patent protection and dynamic knowledge spillovers. Our findings suggest that governments should under some circumstances set a higher carbon tax today if we have technological change driven by R&D than if we have pure exogenous technological change. Based on numerical simulations these circumstances are i) "a standing on shoulders" type of externality in R&D or ii) weak patent protection.

Suggested Citation

  • Mads Greaker & Lise-Lotte Pade, 2008. "Optimal CO2 abatement and technological change. Should emission taxes start high in order to spur R&D?," Discussion Papers 548, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:548
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp548.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    2. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    3. Jones, Charles I & Williams, John C, 2000. "Too Much of a Good Thing? The Economics of Investment in R&D," Journal of Economic Growth, Springer, vol. 5(1), pages 65-85, March.
    4. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    5. Reyer Gerlagh & Snorre Kverndokk & Knut Einar Rosendah, 2008. "Linking Environmental and Innovation Policy," Working Papers 2008.53, Fondazione Eni Enrico Mattei.
    6. Farzin, Y H & Tahvonen, O, 1996. "Global Carbon Cycle and the Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 48(4), pages 515-536, October.
    7. Goeschl, Timo & Perino, Grischa, 2007. "Innovation without magic bullets: Stock pollution and R&D sequences," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 146-161, September.
    8. Nordhaus, William, 1982. "How Fast Should We Graze the Global Commons?," American Economic Review, American Economic Association, vol. 72(2), pages 242-246, May.
    9. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    10. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    11. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    12. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    13. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    14. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyer Gerlagh & Snorre Kverndokk & Knut Einar Rosendah, 2008. "Linking Environmental and Innovation Policy," Working Papers 2008.53, Fondazione Eni Enrico Mattei.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, Elsevier.
    3. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    4. Golombek, Rolf & Greaker, Mads & Hoel, Michael, 2010. "Climate Policy without Commitment," Memorandum 02/2010, Oslo University, Department of Economics.

    More about this item

    Keywords

    Climate policy; technological change; emission tax;

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/ssbgvno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.