IDEAS home Printed from
   My bibliography  Save this paper

Heterogeneous Agents Past and Forward Time Horizons in Setting Up a Computational Model


  • Serge Hayward


Price forecasting and trading strategies modelling are examined with major international stock indexes under different time horizons. Results demonstrate that an accurate prediction is equally important as a stable saving rate for long-term survivability. The best economic performances are achieved for a one-year investment horizon with longer training not necessarily leading to improved accuracy. Thin markets" dominance by a particular traders" type (e.g. short memory agents) results in a higher likelihood to learn with computational intelligence tools profitable strategies, used by dominant traders. An improvement in profitability is achieved for models optimized with genetic algorithm and fine-tuning of training/validation/testing distribution

Suggested Citation

  • Serge Hayward, 2004. "Heterogeneous Agents Past and Forward Time Horizons in Setting Up a Computational Model," Computing in Economics and Finance 2004 241, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:241

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(03), pages 285-300, September.
    2. Blume, Lawrence & Easley, David, 1992. "Evolution and market behavior," Journal of Economic Theory, Elsevier, vol. 58(1), pages 9-40, October.
    3. Ya-Chi Huang & Shu-Heng Chen, 2003. "Simulating the Evolution of Portfolio Behavior in a Multiple-Asset Agent-Based Artificial Stock Market," Computing in Economics and Finance 2003 62, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Artificial Neural Network; Genetic Algorithm; Heterogeneous Agents; Time Horizons; Memory Length; Economic Profitability; Statistical Accuracy; Financial Markets; Stock Trading Strategies;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.