IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Real-Time Datasets Really Do Make a Difference: Definitional Change, Data Release, and Forecasting

  • Norman R. Swanson


    (Rutgers University)

  • Andres Fernandez


    (Universidad de Los Andes)

In this paper, we empirically assess the extent to which early release inefficiency and definitional change affect prediction precision. In particular, we carry out a series of ex-ante prediction experiments in order to examine: the marginal predictive content of the revision process, the trade-offs associated with predicting different releases of a variable, the importance of particular forms of definitional change which we call “definitional breaks", and the rationality of early releases of economic variables. An important feature of our rationality tests is that they are based solely on the examination of ex-ante predictions, rather than being based on in-sample regression analysis, as are many tests in the extant literature. Our findings point to the importance of making real-time datasets available to forecasters, as the revision process has marginal predictive content, and because predictive accuracy increases when multiple releases of data are used when specifying and estimating prediction models. We also present new evidence that early releases of money are rational, whereas prices and output are irrational. Moreover, we find that regardless of which release of our price variable one specifies as the “target” variable to be predicted, using only “first release” data in model estimation and prediction construction yields mean square forecast error (MSFE) “best” predictions. On the other hand, models estimated and implemented using “latest available release” data are MSFE-best for predicting all releases of money. We argue that these contradictory finding are due to the relevance of definitional breaks in the data generating processes of the variables that we examine. In an empirical analysis, we examine the real-time predictive content of money for income, and we find that vector autoregressions with money do not perform significantly worse than autoregressions, when predicting output during the last 20 years.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 201113.

in new window

Length: 20 pages
Date of creation: 15 May 2011
Date of revision:
Handle: RePEc:rut:rutres:201113
Contact details of provider: Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7363
Fax: (732) 932-7416
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
  2. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  3. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
  4. Todd E. Clark & Michael W. McCracken, 2007. "Tests of equal predictive ability with real-time data," Research Working Paper RWP 07-06, Federal Reserve Bank of Kansas City.
  5. Swanson, N.R. & van Dijk, D.J.C., 2001. "Are statistical reporting agencies getting it right? Data rationality and business cycle asymmetry," Econometric Institute Research Papers EI 2001-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  6. Stock, James H. & Watson, Mark W., 1989. "Interpreting the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 40(1), pages 161-181, January.
  7. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
  8. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, issue Q 4, pages 4-20.
  9. Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
  10. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  11. Myles Callan & Eric Ghysels & Norman R. Swanson, 1998. "Monetary Policy Rules with Model and Data Uncertainty," CIRANO Working Papers 98s-40, CIRANO.
  12. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-67, July.
  13. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
  14. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-35, September.
  15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  16. Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, Exeter University, Department of Economics.
  17. Jon Faust & Jonathan H. Wright, 2007. "Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset," NBER Working Papers 13397, National Bureau of Economic Research, Inc.
  18. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  19. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
  20. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions, Second Version," PIER Working Paper Archive 08-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 04 Apr 2008.
  21. S. Boragan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 319-340, 03.
  22. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 598-620, September.
  23. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  24. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  25. Giampiero M. Gallo & Massimiliano Marcellino, . "Ex Post and Ex Ante Analysis of Provisional Data," Working Papers 141, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  26. Rathjens, Peter & Robins, Russell P, 1995. "Do Government Agencies Use Public Data?: The Case of GNP," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 170-72, February.
  27. Franses, Ph.H.B.F. & Segers, R., 2008. "Seasonality in revisions of macroeconomic data," Econometric Institute Research Papers EI 2008-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201113. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.