IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202522.html
   My bibliography  Save this paper

US-China Tensions and Stock Market Co-movement between the US and China: Insights from a DCC-DAGARCH-MIDAS Model

Author

Listed:
  • Jiawei Xu

    (School of Management and Engineering, Digital Finance Key Laboratory of Jiangsu Province, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China)

  • Elie Bouri

    (School of Business, Lebanese American University, Lebanon)

  • Libing Fang

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

The US and China maintain deep economic ties, yet geopolitical tensions, especially during events such as the trade war, exert significant influence on their financial markets. This study examines how US-China tensions, as captured by the US-China Tension Index (UCT), affect the correlation between US and Chinese stock markets and stock market volatility using a DCC-DAGARCH-MIDAS model. Unlike prior studies that consider geopolitical risk and trade war shocks separately or give the same weight to positive and negative shocks of UCT, our approach jointly models asymmetric short-term volatility, macro-driven long-term variance, dynamic inter-market correlations, and assigns different weights to positive and negative shocks of UCT. The findings show that heightened tensions lead to stronger co-movements in return volatility, with effects becoming more immediate during the trade war. Beyond aggregate indices, we analyze the multi-tiered structure of the Chinese stock market, covering small and medium-sized enterprises (SMEs), blue-chip stocks, and technology-focused stocks. The results show that sensitivities vary across China's stock market indices, where SME index displays the most sensitive to UCT. These results provide practical insights for investors and policymakers aiming to manage risks in an increasingly geopolitically sensitive environment.

Suggested Citation

  • Jiawei Xu & Elie Bouri & Libing Fang & Rangan Gupta, 2025. "US-China Tensions and Stock Market Co-movement between the US and China: Insights from a DCC-DAGARCH-MIDAS Model," Working Papers 202522, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202522
    as

    Download full text from publisher

    File URL: http://www.up.ac.za/media/shared/61/WP/wp_2025_22.zp267958.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Liang & Wan, Xiangyu, 2022. "Economic policy uncertainty and stock price informativeness," Pacific-Basin Finance Journal, Elsevier, vol. 75(C).
    2. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    3. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    4. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    5. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    6. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    7. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    8. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    9. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    10. Robert F Engle & Stefano Giglio & Bryan Kelly & Heebum Lee & Johannes Stroebel, 2020. "Hedging Climate Change News," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1184-1216.
    11. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    12. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    13. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    14. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    15. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    16. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2021. "Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model," Econometrics and Statistics, Elsevier, vol. 20(C), pages 12-28.
    17. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
    18. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    19. Chen, Yanhua & Pantelous, Athanasios A., 2022. "The U.S.-China trade conflict impacts on the Chinese and U.S. stock markets: A network-based approach," Finance Research Letters, Elsevier, vol. 46(PB).
    20. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    21. Yuping Song & Yankun Sun & Yue Ma, 2023. "The impact of Sino–US trade war on the co-movement between China’s stock market and global stock markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-24, June.
    22. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    23. Shi, Yujie & Wang, Liming & Ke, Jian, 2021. "Does the US-China trade war affect co-movements between US and Chinese stock markets?," Research in International Business and Finance, Elsevier, vol. 58(C).
    24. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    2. Karanasos, M. & Yfanti, S., 2021. "On the Economic fundamentals behind the Dynamic Equicorrelations among Asset classes: Global evidence from Equities, Real estate, and Commodities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    3. Simona Moagăr-Poladian & Dorina Clichici & Cristian-Valeriu Stanciu, 2019. "The Comovement of Exchange Rates and Stock Markets in Central and Eastern Europe," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    4. Thomas C. Chiang & Lanjun Lao & Qingfeng Xue, 2016. "Comovements between Chinese and global stock markets: evidence from aggregate and sectoral data," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1003-1042, November.
    5. Pineda, Julián & Cortés, Lina M. & Perote, Javier, 2022. "Financial contagion drivers during recent global crises," Economic Modelling, Elsevier, vol. 117(C).
    6. Guglielmo Maria Caporale & Stavroula Yfanti & Menelaos Karanasos & Jiaying Wu, 2024. "Financial integration and European tourism stocks," Chapters, in: Guglielmo M. Caporale (ed.), Handbook of Financial Integration, chapter 21, pages 495-538, Edward Elgar Publishing.
    7. Makrychoriti, Panagiota & Pyrgiotakis, Emmanouil G., 2024. "Firm-level political risk and stock price crashes," Journal of Financial Stability, Elsevier, vol. 74(C).
    8. Bevilacqua, Mattia & Morelli, David & Tunaru, Radu, 2019. "The determinants of the model-free positive and negative volatilities," Journal of International Money and Finance, Elsevier, vol. 92(C), pages 1-24.
    9. Niţoi, Mihai & Pochea, Maria Miruna, 2020. "Time-varying dependence in European equity markets: A contagion and investor sentiment driven analysis," Economic Modelling, Elsevier, vol. 86(C), pages 133-147.
    10. Sakemoto, Ryuta, 2023. "The long-run risk premium in the intertemporal CAPM: International evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    11. S. Yfanti & M. Karanasos & J. Wu & P. Vourvachis, 2025. "Short- and long-run cross-border European sustainability interdependences," Annals of Operations Research, Springer, vol. 347(1), pages 579-610, April.
    12. Gu, Qinen & Li, Shaofang & Tian, Sihua & Wang, Yuyouting, 2024. "Impact of climate risk on energy market risk spillover: Evidence from dynamic heterogeneous network analysis," Energy Economics, Elsevier, vol. 137(C).
    13. Tan, Xueping & Zhong, Yiran & Vivian, Andrew & Geng, Yong & Wang, Ziyi & Zhao, Difei, 2024. "Towards an era of multi-source uncertainty: A systematic and bibliometric analysis," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    14. Mobarek, Asma & Muradoglu, Gulnur & Mollah, Sabur & Hou, Ai Jun, 2016. "Determinants of time varying co-movements among international stock markets during crisis and non-crisis periods," Journal of Financial Stability, Elsevier, vol. 24(C), pages 1-11.
    15. Das, Debojyoti & Kannadhasan, M. & Bhattacharyya, Malay, 2019. "Do the emerging stock markets react to international economic policy uncertainty, geopolitical risk and financial stress alike?," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 1-19.
    16. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2025. "Energy in turmoil: Industry resilience to uncertainty during the global energy crisis," Applied Energy, Elsevier, vol. 389(C).
    17. Badshah, Ihsan & Demirer, Riza & Suleman, Muhammad Tahir, 2019. "The effect of economic policy uncertainty on stock-commodity correlations and its implications on optimal hedging," Energy Economics, Elsevier, vol. 84(C).
    18. Nguyen, Hoang & Javed, Farrukh, 2023. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
    19. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
    20. V. Candila & O. Cepni & G. M. Gallo & R. Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the volatility of US state-level equity returns: Evidence from a GARCH-MIDAS approach with Shrinkage and Cluster Analysis," Working Paper CRENoS 202414, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.