IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202328.html
   My bibliography  Save this paper

Comparing Risk Profiles of International Stock Markets as Functional Data: COVID-19 versus the Global Financial Crisis

Author

Listed:
  • Ryan Shackleton

    (Department of Information Technology, University of Pretoria, Pretoria, South Africa)

  • Sonali Das

    (Department of Business Management, University of Pretoria, Pretoria, South Africa)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, South Africa)

Abstract

In this paper, we aim to provide a detailed econometric analysis of the realised volatility in international stock markets of Brazil, China, Europe, India, the United Kingdom, and the United States, which represent a mix of large developing, and developed markets. For our purpose, we use the Functional Data Analysis (FDA) framework, whence discrete volatility data were first transformed into continuous functions, and thereafter, derivatives of the continuous functions were investigated, and kinetic and potential energy associated is the volatility system were extracted. Results revealed that COVID-19 indeed had a significant effect on international financial market volatility for all the countries, with the exception of China. Therealised volatility of the international financial markets did return to their pre-COVID levels in May 2020, and this recovery time was significantly faster than the 2008 financial crisis recovery period. Within the FDA framework, we further investigated the role of uncertainty on the realised volatility, specifically from an outbreak of an infectious disease (such as COVID-19) and a daily newspaper-based infectious disease index as the predictor. The regression analysis showed that the volatility of financial markets can be accurately modelled by this infectious disease index, but only for periods experiencing an epidemic or pandemic.

Suggested Citation

  • Ryan Shackleton & Sonali Das & Rangan Gupta, 2023. "Comparing Risk Profiles of International Stock Markets as Functional Data: COVID-19 versus the Global Financial Crisis," Working Papers 202328, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202328
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les & Xu, Danyang, 2021. "Pandemic-related financial market volatility spillovers: Evidence from the Chinese COVID-19 epicentre," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 55-81.
    2. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    4. Zaremba, Adam & Kizys, Renatas & Aharon, David Y. & Demir, Ender, 2020. "Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe," Finance Research Letters, Elsevier, vol. 35(C).
    5. Baek, Seungho & Mohanty, Sunil K. & Glambosky, Mina, 2020. "COVID-19 and stock market volatility: An industry level analysis," Finance Research Letters, Elsevier, vol. 37(C).
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    7. Mr. Stijn Claessens & Mr. Luc Laeven & Ms. Deniz O Igan & Mr. Giovanni Dell'Ariccia, 2010. "Lessons and Policy Implications from the Global Financial Crisis," IMF Working Papers 2010/044, International Monetary Fund.
    8. Stijn Claessens & Giovanni Dell’Ariccia & Deniz Igan & Luc Laeven, 2010. "Cross-country experiences and policy implications from the global financial crisis [From Great Depression to Great Credit Crisis: Similarities, differences and lessons]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 25(62), pages 267-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz, Fernando & Henríquez, Pablo A. & Winkelried, Diego, 2022. "Stock market volatility and the COVID-19 reproductive number," Research in International Business and Finance, Elsevier, vol. 59(C).
    2. Pham, Son Duy & Nguyen, Thao Thac Thanh & Li, Xiao-Ming, 2024. "Stabilizing global foreign exchange markets in the time of COVID-19: The role of vaccinations," Global Finance Journal, Elsevier, vol. 59(C).
    3. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    4. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    5. Daisuke Nagakura & Toshiaki Watanabe, 2015. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 45-82.
    6. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    7. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CARF F-Series CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Dinghai Xu, 2010. "A Threshold Stochastic Volatility Model with Realized Volatility," Working Papers 1003, University of Waterloo, Department of Economics, revised May 2010.
    9. Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012. "Modelling and forecasting noisy realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
    10. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    11. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan & Vo, Xuan Vinh, 2023. "Portfolio diversification during the COVID-19 pandemic: Do vaccinations matter?," Journal of Financial Stability, Elsevier, vol. 65(C).
    12. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process," Economic Modelling, Elsevier, vol. 30(C), pages 212-216.
    13. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    14. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    15. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
    16. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    17. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
    18. Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
    19. repec:dau:papers:123456789/4598 is not listed on IDEAS
    20. Qianqiu Liu, 2009. "On portfolio optimization: How and when do we benefit from high-frequency data?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 560-582.
    21. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.

    More about this item

    Keywords

    Realised volatility; International stock markets; Functional data analysis;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.