IDEAS home Printed from
   My bibliography  Save this paper

Arbitrage bots in experimental asset markets


  • Angerer, Martin
  • Neugebauer, Tibor
  • Shachat, Jason


While algorithmic trading robots are a proliferating presence in asset markets, there is no consensus whether their presence improves market quality or benefits individual investors. We examine the impact of robots seeking arbitrage in experimental laboratory markets. We find that the presence of algorithmic arbitrageurs generally enhances market quality. However, the wealth of human traders suffers from the presence of algorithmic traders. These social costs can be mitigated as we find high latency algorithms harm investors less than low latency algorithms; while the improvements in market quality are indistinguishable between algorithm latency levels and whether they provide liquidity or not.

Suggested Citation

  • Angerer, Martin & Neugebauer, Tibor & Shachat, Jason, 2019. "Arbitrage bots in experimental asset markets," MPRA Paper 96224, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:96224

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Peter Gomber & Martin Haferkorn, 2013. "High-Frequency-Trading," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(2), pages 97-99, April.
    2. Biais, Bruno & Foucault, Thierry & Moinas, Sophie, 2015. "Equilibrium fast trading," Journal of Financial Economics, Elsevier, vol. 116(2), pages 292-313.
    3. Thierry Foucault & Johan Hombert & Ioanid Roşu, 2016. "News Trading and Speed," Journal of Finance, American Finance Association, vol. 71(1), pages 335-382, February.
    4. Gary Charness & Tibor Neugebauer, 2019. "A Test of the Modigliani‐Miller Invariance Theorem and Arbitrage in Experimental Asset Markets," Journal of Finance, American Finance Association, vol. 74(1), pages 493-529, February.
    5. Hendershott, Terrence & Riordan, Ryan, 2013. "Algorithmic Trading and the Market for Liquidity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1001-1024, August.
    6. Gary Charness & Uri Gneezy, 2010. "Portfolio Choice And Risk Attitudes: An Experiment," Economic Inquiry, Western Economic Association International, vol. 48(1), pages 133-146, January.
    7. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    8. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, Oxford University Press, vol. 130(4), pages 1547-1621.
    9. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    10. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    11. Andrei A. Kirilenko & Andrew W. Lo, 2013. "Moore's Law versus Murphy's Law: Algorithmic Trading and Its Discontents," Journal of Economic Perspectives, American Economic Association, vol. 27(2), pages 51-72, Spring.
    12. Carrion, Allen, 2013. "Very fast money: High-frequency trading on the NASDAQ," Journal of Financial Markets, Elsevier, vol. 16(4), pages 680-711.
    13. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    14. Thomas Stöckl & Jürgen Huber & Michael Kirchler, 2010. "Bubble measures in experimental asset markets," Experimental Economics, Springer;Economic Science Association, vol. 13(3), pages 284-298, September.
    15. Peter, Bossaerts & Jason, Shachat & Kuangli, Xie, 2018. "Arbitrage Opportunities: Anatomy and Remediation," MPRA Paper 87273, University Library of Munich, Germany.
    16. Shane Frederick, 2005. "Cognitive Reflection and Decision Making," Journal of Economic Perspectives, American Economic Association, vol. 19(4), pages 25-42, Fall.
    17. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    18. Robert A. Jarrow & Philip Protter, 2012. "A Dysfunctional Role Of High Frequency Trading In Electronic Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-15.
    19. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    20. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Clara Vega, 2014. "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 69(5), pages 2045-2084, October.
    21. Brogaard, Jonathan & Garriott, Corey, 2019. "High-Frequency Trading Competition," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(4), pages 1469-1497, August.
    22. Aldrich, Eric M. & Friedman, Daniel, 2017. "Order protection through delayed messaging," Discussion Papers, Research Professorship Market Design: Theory and Pragmatics SP II 2017-502, WZB Berlin Social Science Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    2. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    3. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2018. "Judgement Day: algorithmic trading around the Swiss franc cap removal," Bank of England working papers 711, Bank of England.
    4. Oliver Linton & Soheil Mahmoodzadeh, 2018. "Implications of High-Frequency Trading for Security Markets," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 237-259, August.
    5. Fabrice Rousseau & Herve Boco & Laurent Germain, 2020. "High Frequency Trading: Strategic Competition Between Slow and Fast Traders," Economics Department Working Paper Series n296-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    6. Zhou, Hao & Elliott, Robert J. & Kalev, Petko S., 2019. "Information or noise: What does algorithmic trading incorporate into the stock prices?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 27-39.
    7. S. Sarah Zhang, 2018. "Need for speed: Hard information processing in a high‐frequency world," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 3-21, January.
    8. Ramos, Henrique Pinto & Perlin, Marcelo Scherer, 2020. "Does algorithmic trading harm liquidity? Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Syamala, Sudhakara Reddy & Wadhwa, Kavita, 2020. "Trading performance and market efficiency: Evidence from algorithmic trading," Research in International Business and Finance, Elsevier, vol. 54(C).
    10. Chen, Marie & Garriott, Corey, 2020. "High-frequency trading and institutional trading costs," Journal of Empirical Finance, Elsevier, vol. 56(C), pages 74-93.
    11. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    12. Brogaard, Jonathan & Hendershott, Terrence & Riordan, Ryan, 2017. "High frequency trading and the 2008 short-sale ban," Journal of Financial Economics, Elsevier, vol. 124(1), pages 22-42.
    13. Hautsch, Nikolaus & Noé, Michael & Zhang, S. Sarah, 2017. "The ambivalent role of high-frequency trading in turbulent market periods," CFS Working Paper Series 580, Center for Financial Studies (CFS).
    14. Adrian, Tobias & Capponi, Agostino & Fleming, Michael & Vogt, Erik & Zhang, Hongzhong, 2020. "Intraday market making with overnight inventory costs," Journal of Financial Markets, Elsevier, vol. 50(C).
    15. Donald B. Keim & Massimo Massa & Bastian von Beschwitz, 2018. "First to \"Read\" the News: New Analytics and Algorithmic Trading," International Finance Discussion Papers 1233, Board of Governors of the Federal Reserve System (U.S.).
    16. Aït-Sahalia, Yacine & Brunetti, Celso, 2020. "High frequency traders and the price process," Journal of Econometrics, Elsevier, vol. 217(1), pages 20-45.
    17. Thierry Foucault & Roman Kozhan & Wing Wah Tham, 2017. "Toxic Arbitrage," Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1053-1094.
    18. Breckenfelder, Johannes, 2019. "Competition among high-frequency traders, and market quality," Working Paper Series 2290, European Central Bank.
    19. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    20. Chordia, Tarun & Miao, Bin, 2020. "Market efficiency in real time: Evidence from low latency activity around earnings announcements," Journal of Accounting and Economics, Elsevier, vol. 70(2).

    More about this item


    asset market experiment; arbitrage; algorithmic trading;
    All these keywords.

    JEL classification:

    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:96224. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.