IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/71664.html
   My bibliography  Save this paper

A universal construction generating potential games

Author

Listed:
  • Kukushkin, Nikolai S.

Abstract

Strategic games are considered where each player's total utility is the sum of local utilities obtained from the use of certain "facilities." All players using a facility obtain the same utility therefrom, which may depend on the identities of users and on their behavior. If a regularity condition is satisfied by every facility, then the game admits an exact potential; both congestion games and games with structured utilities are included in the class and satisfy that condition. Under additional assumptions the potential attains its maximum, which is a Nash equilibrium of the game.

Suggested Citation

  • Kukushkin, Nikolai S., 2016. "A universal construction generating potential games," MPRA Paper 71664, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:71664
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/71664/1/MPRA_paper_71664.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    2. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    3. Le Breton, Michel & Weber, Shlomo, 2011. "Games of social interactions with local and global externalities," Economics Letters, Elsevier, vol. 111(1), pages 88-90, April.
    4. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.
    5. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    6. Kukushkin, Nikolai S., 2014. "Strong equilibrium in games with common and complementary local utilities," MPRA Paper 55499, University Library of Munich, Germany.
    7. Konishi, Hideo & Le Breton, Michel & Weber, Shlomo, 1997. "Equilibria in a Model with Partial Rivalry," Journal of Economic Theory, Elsevier, vol. 72(1), pages 225-237, January.
    8. repec:fth:tilbur:9998 is not listed on IDEAS
    9. Tobias Harks & Max Klimm & Rolf Möhring, 2013. "Strong equilibria in games with the lexicographical improvement property," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 461-482, May.
    10. Nikolai S Kukushkin, 2004. "'Strategic supplements' in games with polylinear interactions," Game Theory and Information 0411008, University Library of Munich, Germany, revised 28 Feb 2005.
    11. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukushkin, Nikolai, 2019. "Quasiseparable aggregation in games with common local utilities," MPRA Paper 93588, University Library of Munich, Germany.
    2. Nikolai S. Kukushkin, 2017. "Inseparables: exact potentials and addition," Economics Bulletin, AccessEcon, vol. 37(2), pages 1176-1181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.
    2. Kukushkin, Nikolai S., 2014. "Strong equilibrium in games with common and complementary local utilities," MPRA Paper 55499, University Library of Munich, Germany.
    3. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    4. Kukushkin, Nikolai S., 2015. "Cournot tatonnement and potentials," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 117-127.
    5. Kukushkin, Nikolai, 2019. "Quasiseparable aggregation in games with common local utilities," MPRA Paper 93588, University Library of Munich, Germany.
    6. Tobias Harks & Max Klimm & Rolf Möhring, 2013. "Strong equilibria in games with the lexicographical improvement property," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 461-482, May.
    7. Le Breton, Michel & Weber, Shlomo, 2011. "Games of social interactions with local and global externalities," Economics Letters, Elsevier, vol. 111(1), pages 88-90, April.
    8. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    9. Nikolai Kukushkin, 2011. "Acyclicity of improvements in finite game forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 147-177, February.
    10. Nikolai S. Kukushkin, 2017. "Inseparables: exact potentials and addition," Economics Bulletin, AccessEcon, vol. 37(2), pages 1176-1181.
    11. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    12. Le Breton, Michel & Shapoval, Alexander & Weber, Shlomo, 2020. "A Game-Theoretical Model of the Landscape Theory," TSE Working Papers 20-1113, Toulouse School of Economics (TSE).
    13. Panov, P., 2017. "Nash Equilibria in the Facility Location Problem with Externalities," Journal of the New Economic Association, New Economic Association, vol. 33(1), pages 28-42.
    14. Samir Sbabou & Hatem Smaoui & Abderrahmane Ziad, 2013. "A formula for Nash equilibria in monotone singleton congestion games," Economics Bulletin, AccessEcon, vol. 33(1), pages 334-339.
    15. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    16. Hollard, Guillaume, 2000. "On the existence of a pure strategy Nash equilibrium in group formation games," Economics Letters, Elsevier, vol. 66(3), pages 283-287, March.
    17. Kukushkin, Nikolai S., 2014. "Rosenthal's potential and a discrete version of the Debreu--Gorman Theorem," MPRA Paper 54171, University Library of Munich, Germany.
    18. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.
    19. Harks, Tobias & Klimm, Max, 2015. "Equilibria in a class of aggregative location games," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 211-220.
    20. Le Breton, Michel & Weber, Shlomo, 2004. "Group Formation with Heterogeneous Sets," IDEI Working Papers 288, Institut d'Économie Industrielle (IDEI), Toulouse.

    More about this item

    Keywords

    Potential game; Congestion game; Game with structured utilities; Game of social interactions; Additive aggregation;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:71664. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.