IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/14993.html
   My bibliography  Save this paper

A Game-Theoretical Model of the Landscape Theory

Author

Listed:
  • Le Breton, Michel
  • Shapoval, Alexander
  • Weber, Shlomo

Abstract

In this paper we examine a game-theoretical generalization of the landscape theory introduced by Axelrod and Bennett (1993). In their two-bloc setting each player ranks the blocs on the basis of the sum of her individual evaluations of members of the group. We extend the Axelrod-Bennett setting by allowing an arbitrary number of blocs and expanding the set of possible deviations to include multi-country gradual deviations. We show that a Pareto optimal landscape equilibrium which is immune to profitable gradual deviations always exists. We also indicate that while a landscape equilibrium is a stronger concept than Nash equilibrium in pure strategies, it is weaker than strong Nash equilibrium.

Suggested Citation

  • Le Breton, Michel & Shapoval, Alexander & Weber, Shlomo, 2020. "A Game-Theoretical Model of the Landscape Theory," CEPR Discussion Papers 14993, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:14993
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=14993
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Voorneveld & Peter Borm & Freek Van Megen & Stef Tijs & Giovanni Facchini, 1999. "Congestion Games And Potentials Reconsidered," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 283-299.
    2. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    3. Axelrod, Robert & Bennett, D. Scott, 1993. "A Landscape Theory of Aggregation," British Journal of Political Science, Cambridge University Press, vol. 23(2), pages 211-233, April.
    4. Robert Axelrod & Will Mitchell & Robert E. Thomas & D. Scott Bennett & Erhard Bruderer, 1995. "Coalition Formation in Standard-Setting Alliances," Management Science, INFORMS, vol. 41(9), pages 1493-1508, September.
    5. Kukushkin, Nikolai S., 2019. "Equilibria in ordinal status games," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 130-135.
    6. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    7. Tayfun Sönmez & Suryapratim Banerjee & Hideo Konishi, 2001. "Core in a simple coalition formation game," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(1), pages 135-153.
    8. Konishi, Hideo & Le Breton, Michel & Weber, Shlomo, 1997. "Equilibria in a Model with Partial Rivalry," Journal of Economic Theory, Elsevier, vol. 72(1), pages 225-237, January.
    9. repec:fth:tilbur:9998 is not listed on IDEAS
    10. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    11. Milchtaich, Igal & Winter, Eyal, 2002. "Stability and Segregation in Group Formation," Games and Economic Behavior, Elsevier, vol. 38(2), pages 318-346, February.
    12. Andelman, Nir & Feldman, Michal & Mansour, Yishay, 2009. "Strong price of anarchy," Games and Economic Behavior, Elsevier, vol. 65(2), pages 289-317, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    blocs; gradual deviation; hedonic games; landscape equilibrium; Landscape theory; potential functions;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:14993. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://www.cepr.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.