IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/43652.html
   My bibliography  Save this paper

The dynamics of market share’s growth and competition in quadratic mappings

Author

Listed:
  • Dominique, C-Rene
  • Rivera-Solis, Luis Eduardo

Abstract

This paper shows that the observed output of any market, placed within the confine of a quadratic map, can characterize the state of that market. Such an approach explains the process of market share’s growth and its pitfalls, the consequences of broken symmetry of scaling, as well as the limits of firms’ competition for market shares

Suggested Citation

  • Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "The dynamics of market share’s growth and competition in quadratic mappings," MPRA Paper 43652, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:43652
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/43652/5/MPRA_paper_43652.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Invernizzi, Sergio & Medio, Alfredo, 1991. "On lags and chaos in economic dynamic models," Journal of Mathematical Economics, Elsevier, vol. 20(6), pages 521-550.
    2. Thomas Lux, 1996. "Long-term stochastic dependence in financial prices: evidence from the German stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(11), pages 701-706.
    3. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. Dominique, C-René & Rivera-Solis, Luis Eduardo, 2011. "Mixed fractional Brownian motion, short and long-term Dependence and economic conditions: the case of the S&P-500 Index," MPRA Paper 34860, University Library of Munich, Germany.
    6. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    7. Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "Could Investors’ Expectations Explain Temporal Variations in Hurst’s Exponent, Loci of Multifractal Spectra, and Statistical Prediction Errors? The Case of the S&P 500 Index," MPRA Paper 41407, University Library of Munich, Germany, revised 26 Feb 2012.
    8. Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "Short-term Dependence in Time Series as an Index of Complexity: Example from the S&P-500 Index," MPRA Paper 41408, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique, C-Rene, 2013. "Estimating investors' behavior and errors in probabilistic forecasts by the Kolmogorov entropy and noise colors of non-hyperbolic attractors," MPRA Paper 46451, University Library of Munich, Germany.
    2. Dominique, C-Rene, 2013. "Estimating investors' behavior and errorsin probabilistic forecasts by the Kolmogorov entropy and noise colors of multifractal attractors," MPRA Paper 46231, University Library of Munich, Germany, revised 16 Apr 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    2. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    3. Thomas Lux, 2003. "The Multi-Fractal Model of Asset Returns:Its Estimation via GMM and Its Use for Volatility Forecasting," Computing in Economics and Finance 2003 14, Society for Computational Economics.
    4. Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "Short-term Dependence in Time Series as an Index of Complexity: Example from the S&P-500 Index," MPRA Paper 41408, University Library of Munich, Germany.
    5. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
    6. Jamdee, Sutthisit & Los, Cornelis A., 2007. "Long memory options: LM evidence and simulations," Research in International Business and Finance, Elsevier, vol. 21(2), pages 260-280, June.
    7. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    8. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    10. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    11. Batten, Jonathan A. & Ellis, Craig A., 2005. "Paramater estimation bias and volatility scaling in Black-Scholes option prices," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 165-176.
    12. Liu, Ruipeng & Lux, Thomas, 2010. "Flexible and robust modelling of volatility comovements: a comparison of two multifractal models," Kiel Working Papers 1594, Kiel Institute for the World Economy (IfW Kiel).
    13. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    14. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    16. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    17. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    18. Mehmet Ali Balcı & Larissa M. Batrancea & Ömer Akgüller & Lucian Gaban & Mircea-Iosif Rus & Horia Tulai, 2022. "Fractality of Borsa Istanbul during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(14), pages 1-33, July.
    19. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    20. Christian Walter, 2020. "Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections," Sustainability, MDPI, vol. 12(18), pages 1-28, September.

    More about this item

    Keywords

    Market Share; Quadratic Mappings; Monofractality; Broken Symmetry of Translation of Equilibria. Multi-fractality; Complexity; Chaos;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G00 - Financial Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.