IDEAS home Printed from
   My bibliography  Save this paper

Developing a short-term comparative optimization forecasting model for operational units’ strategic planning


  • Filippou, Miltiades
  • Zervopoulos, Panagiotis


Data drain for peer active units operating in the same sector is a major factor that prevents policy makers from developing flawless strategic plans for their organisation. This study introduces a hybrid model that incorporates a purely deterministic method, Data Envelopment Analysis (DEA), and a semi-parametric technique, Artificial Neural Networks (ANNs), to provide a strategic planning tool for efficiency optimization applicable to short-term lag of data availability. For consecutive time instances, t and t+1, the developed DEANN model returns optimum “regression-type” input and output levels for every sample operational unit, even for the fully efficient ones, that may decide to alter the levels of the efficiency determinants, respecting the t-time efficiency frontier.

Suggested Citation

  • Filippou, Miltiades & Zervopoulos, Panagiotis, 2011. "Developing a short-term comparative optimization forecasting model for operational units’ strategic planning," MPRA Paper 30766, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:30766

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Forecasting; Optimization; Efficiency; Data Envelopment Analysis (DEA); Artificial Neural Networks (ANN); Adaptive Techniques;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.