IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Higher-order volatility: time series

  • Carey, Alexander

This paper presents time-series of higher-order volatilities for the S&P 500 and EURUSD. We use a 3-volatility model which accounts for non-normal skewness and kurtosis. The volatilities control the level, slope and curvature of the Black-Scholes implied volatility smile; accordingly we term them "base", "skew" and "smile" volatility. We define instantaneous skewness and kurtosis as simple ratios of the volatilities, and show that when these metrics are held constant, the model is relative sticky-delta. For the S&P 500 in 2008, skew and smile volatility are highly correlated with base volatility. Instantaneous skewness and kurtosis are remarkably stable, including over the market dislocation of the last four months of the year. Daily changes in all three volatilities are correlated with daily returns. For EURUSD in 2006, base and smile volatility are closely correlated, but in contrast to the equity case, skew volatility is independent and changes sign. This change in sign appears to provide advance warning of the two major market moves of the year. However, daily changes in the volatilities are uncorrelated with daily returns.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/21087/1/MPRA_paper_21087.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 21087.

as
in new window

Length:
Date of creation: 12 Jan 2010
Date of revision:
Handle: RePEc:pra:mprapa:21087
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
  2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  3. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
  4. Simon H. Babbs & Michael J. P. Selby, 1998. "Pricing by Arbitrage Under Arbitrary Information," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 163-168.
  5. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
  6. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  7. Dorje C. Brody & Lane P. Hughston & Andrea Macrina, 2007. "Information-Based Asset Pricing," Papers 0704.1976, arXiv.org.
  8. Carey, Alexander, 2006. "Higher-order volatility: dynamics and sensitivities," MPRA Paper 5009, University Library of Munich, Germany.
  9. Reiswich, Dimitri & Wystup, Uwe, 2009. "FX volatility smile construction," CPQF Working Paper Series 20, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
  10. Carey, Alexander, 2005. "Higher-order volatility," MPRA Paper 4993, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21087. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.