IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/20713.html
   My bibliography  Save this paper

On continuous ordinal potential games

Author

Listed:
  • Kukushkin, Nikolai S.

Abstract

If the preferences of the players in a strategic game satisfy certain continuity conditions, then the acyclicity of individual improvements implies the existence of a Nash equilibrium. Moreover, starting from any strategy profile, an arbitrary neighborhood of the set of Nash equilibria can be reached after a finite number of individual improvements.

Suggested Citation

  • Kukushkin, Nikolai S., 2010. "On continuous ordinal potential games," MPRA Paper 20713, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:20713
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/20713/1/MPRA_paper_20713.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kukushkin, Nikolai S., 1999. "Potential games: a purely ordinal approach," Economics Letters, Elsevier, vol. 64(3), pages 279-283, September.
    2. Voorneveld, Mark & Norde, Henk, 1997. "A Characterization of Ordinal Potential Games," Games and Economic Behavior, Elsevier, vol. 19(2), pages 235-242, May.
    3. Kukushkin, Nikolai S., 2004. "Best response dynamics in finite games with additive aggregation," Games and Economic Behavior, Elsevier, vol. 48(1), pages 94-110, July.
    4. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    5. Kukushkin, Nikolai S., 2002. "Perfect Information and Potential Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 306-317, February.
    6. Voorneveld, Mark, 1997. "Equilibria and approximate equilibria in infinite potential games," Economics Letters, Elsevier, vol. 56(2), pages 163-169, October.
    7. Friedman, James W. & Mezzetti, Claudio, 2001. "Learning in Games by Random Sampling," Journal of Economic Theory, Elsevier, vol. 98(1), pages 55-84, May.
    8. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    9. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    10. Nikolai S. Kukushkin & Satoru Takahashi & Tetsuo Yamamori, 2005. "Improvement dynamics in games with strategic complementarities," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 229-238, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    potential game; compact-continuous game; finite improvement property;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20713. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.