IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/81460.html
   My bibliography  Save this paper

Better response dynamics and Nash equilibrium in discontinuous games

Author

Listed:
  • Kukushkin, Nikolai S.

Abstract

Philip Reny's approach to games with discontinuous utility functions can work outside its original context. The existence of Nash equilibrium and the possibility to approach the equilibrium set with a finite number of individual improvements are established, under conditions weaker than the better reply security, for three classes of strategic games: potential games, games with strategic complements, and aggregative games with appropriate monotonicity conditions.

Suggested Citation

  • Kukushkin, Nikolai S., 2017. "Better response dynamics and Nash equilibrium in discontinuous games," MPRA Paper 81460, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:81460
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/81460/1/MPRA_paper_81460.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/82802/1/MPRA_paper_82802.pdf
    File Function: revised version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. William Novshek, 1985. "On the Existence of Cournot Equilibrium," Review of Economic Studies, Oxford University Press, vol. 52(1), pages 85-98.
    2. John K.-H. Quah & Bruno Strulovici, 2009. "Comparative Statics, Informativeness, and the Interval Dominance Order," Econometrica, Econometric Society, vol. 77(6), pages 1949-1992, November.
    3. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Post-Print halshs-00426402, HAL.
    4. Shannon, Chris, 1995. "Weak and Strong Monotone Comparative Statics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 209-227, March.
    5. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    6. Martin Kaae Jensen, 2018. "Aggregative games," Chapters, in: Luis C. Corchón & Marco A. Marini (ed.),Handbook of Game Theory and Industrial Organization, Volume I, chapter 4, pages 66-92, Edward Elgar Publishing.
    7. Dubey, Pradeep & Haimanko, Ori & Zapechelnyuk, Andriy, 2006. "Strategic complements and substitutes, and potential games," Games and Economic Behavior, Elsevier, vol. 54(1), pages 77-94, January.
    8. Kukushkin, Nikolai S., 2015. "Cournot tatonnement in aggregative games with monotone best responses," MPRA Paper 66976, University Library of Munich, Germany.
    9. John K.-H Quah, 2007. "The Comparative Statics of Constrained Optimization Problems," Econometrica, Econometric Society, vol. 75(2), pages 401-431, March.
    10. Martin Jensen, 2010. "Aggregative games and best-reply potentials," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(1), pages 45-66, April.
    11. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    12. Kukushkin, Nikolai S., 1994. "A fixed-point theorem for decreasing mappings," Economics Letters, Elsevier, vol. 46(1), pages 23-26, September.
    13. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    14. Andrew McLennan & Paulo K. Monteiro & Rabee Tourky, 2011. "Games With Discontinuous Payoffs: A Strengthening of Reny's Existence Theorem," Econometrica, Econometric Society, vol. 79(5), pages 1643-1664, September.
    15. Prokopovych, Pavlo & Yannelis, Nicholas C., 2017. "On strategic complementarities in discontinuous games with totally ordered strategies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 147-153.
    16. Nikolai Kukushkin, 2013. "Monotone comparative statics: changes in preferences versus changes in the feasible set," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(3), pages 1039-1060, April.
    17. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Documents de travail du Centre d'Economie de la Sorbonne 09061, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Wakker, Peter, 1988. "Continuity of Preference Relations for Separable Topologies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 105-110, February.
    19. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
    20. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00750953, HAL.
    21. Nikolai S Kukushkin, 2004. "'Strategic supplements' in games with polylinear interactions," Game Theory and Information 0411008, University Library of Munich, Germany, revised 28 Feb 2005.
    22. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00426402, HAL.
    23. Philip Reny, 2011. "Strategic approximations of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 17-29, September.
    24. Nikolai Kukushkin, 2011. "Nash equilibrium in compact-continuous games with a potential," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 387-392, May.
    25. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    26. Donald M. Topkis, 1978. "Minimizing a Submodular Function on a Lattice," Operations Research, INFORMS, vol. 26(2), pages 305-321, April.
    27. Marco LiCalzi & Arthur F. Veinott, 2005. "Subextremal functions and lattice programming," GE, Growth, Math methods 0509001, University Library of Munich, Germany.
    28. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    29. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    30. Nikolai S. Kukushkin & Satoru Takahashi & Tetsuo Yamamori, 2005. "Improvement dynamics in games with strategic complementarities," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 229-238, June.
    31. Pavlo Prokopovych, 2013. "The single deviation property in games with discontinuous payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(2), pages 383-402, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukushkin, Nikolai S., 2020. "Ordinal status games on networks," MPRA Paper 104729, University Library of Munich, Germany.
    2. Kukushkin, Nikolai S., 2019. "Equilibria in ordinal status games," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 130-135.
    3. Ben Amiet & Andrea Collevecchio & Kais Hamza, 2020. "When "Better" is better than "Best"," Papers 2011.00239, arXiv.org.
    4. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    5. Nikolai S. Kukushkin & Pierre von Mouche, 2018. "Cournot tatonnement and Nash equilibrium in binary status games," Economics Bulletin, AccessEcon, vol. 38(2), pages 1038-1044.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukushkin, Nikolai S., 2016. "Nash equilibrium with discontinuous utility functions: Reny's approach extended," MPRA Paper 75862, University Library of Munich, Germany.
    2. Harks, Tobias & Klimm, Max, 2015. "Equilibria in a class of aggregative location games," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 211-220.
    3. Kukushkin, Nikolai S., 2013. "Approximate Nash equilibrium under the single crossing conditions," MPRA Paper 44320, University Library of Munich, Germany.
    4. Nikolai Kukushkin, 2015. "The single crossing conditions for incomplete preferences," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 225-251, February.
    5. Kukushkin, Nikolai S., 2015. "Cournot tatonnement in aggregative games with monotone best responses," MPRA Paper 66976, University Library of Munich, Germany.
    6. Kukushkin, Nikolai S., 2015. "Cournot tatonnement and potentials," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 117-127.
    7. Prokopovych, Pavlo & Yannelis, Nicholas C., 2017. "On strategic complementarities in discontinuous games with totally ordered strategies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 147-153.
    8. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    9. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
    10. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    11. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    12. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    13. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    14. Kukushkin, Nikolai S., 2020. "Ordinal status games on networks," MPRA Paper 104729, University Library of Munich, Germany.
    15. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    16. Roy, Sunanda & Sabarwal, Tarun, 2012. "Characterizing stability properties in games with strategic substitutes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 337-353.
    17. Roy, Sunanda & Sabarwal, Tarun, 2010. "Monotone comparative statics for games with strategic substitutes," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 793-806, September.
    18. Amir, Rabah & De Castro, Luciano, 2017. "Nash equilibrium in games with quasi-monotonic best-responses," Journal of Economic Theory, Elsevier, vol. 172(C), pages 220-246.
    19. Federico Quartieri & Pier Luigi Sacco, 2016. "A note on the symmetry of all Nash equilibria in games with increasing best replies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 81-93, April.
    20. Ewerhart, Christian, 2014. "Cournot games with biconcave demand," Games and Economic Behavior, Elsevier, vol. 85(C), pages 37-47.

    More about this item

    Keywords

    discontinuous game; potential game; Bertrand competition; strategic complements; aggregative game;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:81460. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.