IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Subextremal functions and lattice programming

Listed author(s):
  • Marco LiCalzi

    (University of Venice, Italy)

  • Arthur F. Veinott

    (Stanford University)

Let M and N be the set of minimizers of a function f over respective subsets K and L of a lattice, with K being lower than L. This paper characterizes the class of functions f for which M is lower (resp., weakly lower, meet lower, join lower, chain lower) than N for all K lower than L. The resulting five classes of functions, called subextremal variants, have alternate characterizations by variants of the downcrossing-differences property, i.e., their first differences change sign at most once from plus to minus along complementary chains.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series GE, Growth, Math methods with number 0509001.

in new window

Length: 21 pages
Date of creation: 04 Sep 2005
Handle: RePEc:wpa:wuwpge:0509001
Note: Type of Document - pdf; pages: 21. 21 pages, scanned from original on paper to a PDF
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpge:0509001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.