IDEAS home Printed from https://ideas.repec.org/p/kse/dpaper/56.html
   My bibliography  Save this paper

On Strategic Complementarities in Discontinuous Games with Totally Ordered Strategies

Author

Listed:
  • Pavlo Prokopovych

    (Kyiv School of Economics)

  • Nicholas C. Yannelis

    (University of Iowa)

Abstract

This paper studies the existence of a pure strategy Nash equilibrium in games with strategic complementarities where the strategy sets are totally ordered. By relaxing the conventional conditions related to upper semicontinuity and single crossing, we enlarge the class of games to which monotone techniques are applicable. The results are illustrated with a number of economics-related examples.

Suggested Citation

  • Pavlo Prokopovych & Nicholas C. Yannelis, 2015. "On Strategic Complementarities in Discontinuous Games with Totally Ordered Strategies," Discussion Papers 56, Kyiv School of Economics.
  • Handle: RePEc:kse:dpaper:56
    as

    Download full text from publisher

    File URL: http://repec.kse.org.ua/pdf/KSE_dp56.pdf
    File Function: November 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    2. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    3. Paulo Barelli & Idione Meneghel, 2013. "A Note on the Equilibrium Existence Problem in Discontinuous Games," Econometrica, Econometric Society, vol. 81(2), pages 813-824, March.
    4. Milgrom,Paul, 2004. "Putting Auction Theory to Work," Cambridge Books, Cambridge University Press, number 9780521536721, May.
    5. John K.-H. Quah & Bruno Strulovici, 2009. "Comparative Statics, Informativeness, and the Interval Dominance Order," Econometrica, Econometric Society, vol. 77(6), pages 1949-1992, November.
    6. Aaron S. Edlin & Chris Shannon, 1998. "Strict Single Crossing and the Strict Spence-Mirrlees Condition: A Comment on Monotone Comparative Statics," Econometrica, Econometric Society, vol. 66(6), pages 1417-1426, November.
    7. Allison, Blake A. & Lepore, Jason J., 2014. "Verifying payoff security in the mixed extension of discontinuous games," Journal of Economic Theory, Elsevier, vol. 152(C), pages 291-303.
    8. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, John Wiley & Sons, vol. 71(3), pages 636-660, January.
    9. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    10. Philip J. Reny, 2011. "On the Existence of Monotone Pure‐Strategy Equilibria in Bayesian Games," Econometrica, Econometric Society, vol. 79(2), pages 499-553, March.
    11. Shannon, Chris, 1995. "Weak and Strong Monotone Comparative Statics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 209-227, March.
    12. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    13. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
    14. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    15. Amir, Rabah, 1996. "Cournot Oligopoly and the Theory of Supermodular Games," Games and Economic Behavior, Elsevier, vol. 15(2), pages 132-148, August.
    16. John K.‐H. Quah & Bruno Strulovici, 2012. "Aggregating the Single Crossing Property," Econometrica, Econometric Society, vol. 80(5), pages 2333-2348, September.
    17. Pavlo Prokopovych, 2011. "On equilibrium existence in payoff secure games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 5-16, September.
    18. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    19. Philip J. Reny & Shmuel Zamir, 2004. "On the Existence of Pure Strategy Monotone Equilibria in Asymmetric First-Price Auctions," Econometrica, Econometric Society, vol. 72(4), pages 1105-1125, July.
    20. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    21. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    22. Athey, Susan, 2001. "Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information," Econometrica, Econometric Society, vol. 69(4), pages 861-889, July.
    23. Roberts, John & Sonnenschein, Hugo, 1976. "On the existence of Cournot equilbrium without concave profit functions," Journal of Economic Theory, Elsevier, vol. 13(1), pages 112-117, August.
    24. Monteiro, Paulo Klinger & Page Jr, Frank H., 2007. "Uniform payoff security and Nash equilibrium in compact games," Journal of Economic Theory, Elsevier, vol. 134(1), pages 566-575, May.
    25. Andrew McLennan & Paulo K. Monteiro & Rabee Tourky, 2011. "Games With Discontinuous Payoffs: A Strengthening of Reny's Existence Theorem," Econometrica, Econometric Society, vol. 79(5), pages 1643-1664, September.
    26. Pavlo Prokopovych, 2013. "The single deviation property in games with discontinuous payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(2), pages 383-402, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    2. Amir, Rabah & Evstigneev, Igor V., 2018. "A new look at the classical Bertrand duopoly," Games and Economic Behavior, Elsevier, vol. 109(C), pages 99-103.
    3. Kukushkin, Nikolai S., 2020. "Ordinal status games on networks," MPRA Paper 104729, University Library of Munich, Germany.
    4. Finn Christensen, 2019. "Comparative statics and heterogeneity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(3), pages 665-702, April.
    5. Flesch, Janos & Herings, P. Jean-Jacques & Maes, Jasmine & Predtetchinski, Arkadi, 2019. "Individual upper semicontinuity and subgame perfect ϵ-equilibria in games with almost perfect information," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).
    6. Kukushkin, Nikolai S., 2018. "Better response dynamics and Nash equilibrium in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 68-78.
    7. Amir, Rabah & De Castro, Luciano, 2017. "Nash equilibrium in games with quasi-monotonic best-responses," Journal of Economic Theory, Elsevier, vol. 172(C), pages 220-246.
    8. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    9. Rabah Amir & Igor Evstigneev & Adriana Gama, 2021. "Oligopoly with network effects: firm-specific versus single network," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1203-1230, April.
    10. Anne-Christine Barthel & Eric Hoffmann, 2019. "Rationalizability and learning in games with strategic heterogeneity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(3), pages 565-587, April.
    11. Rabah Amir, 2018. "Special issue: supermodularity and monotone methods in economics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 547-556, October.
    12. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    13. János Flesch & P. Jean-Jacques Herings & Jasmine Maes & Arkadi Predtetchinski, 0. "Individual upper semicontinuity and subgame perfect $$\epsilon $$ ϵ -equilibria in games with almost perfect information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 0, pages 1-25.
    14. Nikolai S. Kukushkin & Pierre von Mouche, 2018. "Cournot tatonnement and Nash equilibrium in binary status games," Economics Bulletin, AccessEcon, vol. 38(2), pages 1038-1044.
    15. Charlene Cosandier & Filomena Garcia & Malgorzata Knauff, 2018. "Price competition with differentiated goods and incomplete product awareness," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 681-705, October.
    16. Łukasz Balbus & Paweł Dziewulski & Kevin Reffett & Łukasz Woźny, 2019. "A qualitative theory of large games with strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(3), pages 497-523, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    2. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    3. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    4. Kukushkin, Nikolai S., 2018. "Better response dynamics and Nash equilibrium in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 68-78.
    5. Amir, Rabah & De Castro, Luciano, 2017. "Nash equilibrium in games with quasi-monotonic best-responses," Journal of Economic Theory, Elsevier, vol. 172(C), pages 220-246.
    6. Oriol Carbonell-Nicolau & Richard P. McLean, 2019. "Nash and Bayes–Nash equilibria in strategic-form games with intransitivities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 935-965, November.
    7. Amir, Rabah, 2005. "Ordinal versus cardinal complementarity: The case of Cournot oligopoly," Games and Economic Behavior, Elsevier, vol. 53(1), pages 1-14, October.
    8. Kukushkin, Nikolai S., 2013. "Approximate Nash equilibrium under the single crossing conditions," MPRA Paper 44320, University Library of Munich, Germany.
    9. Harks, Tobias & Klimm, Max, 2015. "Equilibria in a class of aggregative location games," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 211-220.
    10. Oriol Carbonell-Nicolau & Richard P. McLean, 2018. "On the Existence of Nash Equilibrium in Bayesian Games," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 100-129, February.
    11. Rabia Nessah, 2013. "Weakly Continuous Security in Discontinuous and Nonquasiconcave Games: Existence and Characterization," Working Papers 2013-ECO-20, IESEG School of Management.
    12. Mensch, Jeffrey, 2020. "On the existence of monotone pure-strategy perfect Bayesian equilibrium in games with complementarities," Journal of Economic Theory, Elsevier, vol. 187(C).
    13. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
    14. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    15. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    16. Luciano Castro, 2011. "Equilibrium existence and approximation of regular discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 67-85, September.
    17. Kukushkin, Nikolai S., 2016. "Nash equilibrium with discontinuous utility functions: Reny's approach extended," MPRA Paper 75862, University Library of Munich, Germany.
    18. He, Wei & Yannelis, Nicholas C., 2016. "Existence of equilibria in discontinuous Bayesian games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 181-194.
    19. Nikolai Kukushkin, 2015. "The single crossing conditions for incomplete preferences," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 225-251, February.
    20. Roy, Sunanda & Sabarwal, Tarun, 2012. "Characterizing stability properties in games with strategic substitutes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 337-353.

    More about this item

    Keywords

    Discontinuous game; Strategic complementarities; Better-reply security; Directional single crossing; Increasing correspondence;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kse:dpaper:56. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ksecoua.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iryna Sobetska (email available below). General contact details of provider: https://edirc.repec.org/data/ksecoua.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.