IDEAS home Printed from https://ideas.repec.org/p/pcp/pucwps/wp00319.html
   My bibliography  Save this paper

Understanding The Functional Central Limit Theorems With Some Applications To Unit Root Testing With Structural Change

Author

Listed:
  • Juan Carlos Aquino
  • Gabriel Rodríguez

    () (Departamento de Economía - Pontificia Universidad Católica del Perú)

Abstract

This paper analyzes and employs two versions of the Functional Central Limit Theorem within the framework of a unit root with a structural break. Initial attention is focused on the probabilistic structure of the time series to be considered. Later, attention is placed on the asymptotic theory for nonstationary time series proposed by Phillips (1987a), which is applied by Perron (1989) to study the effects of an (assumed) exogenous structural break on the power of the augmented Dickey-Fuller test and by Zivot and Andrews (1992) to criticize the exogeneity assumption and propose a method for estimating an endogenous breakpoint. A systematic method for dealing with e¢ ciency issues is introduced by Perron and RodrÌguez (2003), which extends the Generalized Least Squares detrending approach due to Elliott, Rothenberg, and Stock (1996)

Suggested Citation

  • Juan Carlos Aquino & Gabriel Rodríguez, 2011. "Understanding The Functional Central Limit Theorems With Some Applications To Unit Root Testing With Structural Change," Documentos de Trabajo / Working Papers 2011-319, Departamento de Economía - Pontificia Universidad Católica del Perú.
  • Handle: RePEc:pcp:pucwps:wp00319
    as

    Download full text from publisher

    File URL: http://files.pucp.edu.pe/departamento/economia/DDD319.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-1043, September.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
    4. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    5. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    6. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    7. Alok Bhargava, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Oxford University Press, vol. 53(3), pages 369-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aquino, Juan Carlos & Espino, Freddy, 2013. "Terms of Trade and Current Account Fluctuations: a Vector Autoregression Approach," Working Papers 2013-008, Banco Central de Reserva del Perú.
    2. Gabriel Rodríguez & Alfredo Vargas, 2012. "Impacto de expectativas políticas en los retornos del Índice General de la Bolsa de Valores de Lima," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 35(70), pages 190-223.

    More about this item

    Keywords

    Hypothesis Testing; Unit Root; Structural Break; Functional Central Limit Theorem; Weak Convergence; Wiener Process; Ornstein-Uhlenbeck Process;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pcp:pucwps:wp00319. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/depucpe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.