IDEAS home Printed from https://ideas.repec.org/p/not/notgts/09-01.html
   My bibliography  Save this paper

Robust methods for detecting multiple level breaks in autocorrelated time series [Revised to become No. 10/01 above]

Author

Listed:
  • David I. Harvey
  • Stephen J. Leybourne
  • A. M. Robert Taylor

Abstract

In this paper we propose tests for the null hypothesis that a time series process displays a constant level against the alternative that it displays (possibly) multiple changes in level. Our proposed tests are based on functions of appropriately standardised sequences of the differences between sub-sample mean estimates from the series under investigation. The tests we propose differ notably from extant tests for level breaks in the literature in that they are designed to be robust as to whether the process admits an autoregressive unit root (the data are I(1)) or stable autoregressive roots (the data are I(0)). We derive the asymptotic null distributions of our proposed tests, along with representations for their asymptotic local power functions against Pitman drift alternatives under both I(0) and I(1) environments. Associated estimators of the level break fractions are also discussed. We initially outline our procedure through the case of non-trending series, but our analysis is subsequently extended to allow for series which display an underlying linear trend, in addition to possible level breaks. Monte Carlo simulation results are presented which suggest that the proposed tests perform well in small samples, showing good size control under the null, regardless of the order of integration of the data, and displaying very decent power when level breaks occur. An empirical application of the methods proposed in this paper suggests that the majority of the stock price series which comprise the NASDAQ 100 index display level breaks.

Suggested Citation

  • David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2009. "Robust methods for detecting multiple level breaks in autocorrelated time series [Revised to become No. 10/01 above]," Discussion Papers 09/01, University of Nottingham, Granger Centre for Time Series Econometrics.
  • Handle: RePEc:not:notgts:09/01
    as

    Download full text from publisher

    File URL: http://www.nottingham.ac.uk/economics/grangercentre/papers/10-01.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pierre Perron & Gabriel RodrÌguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, March.
    2. Mohitosh Kejriwal & Pierre Perron, 2010. "A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 305-328, September.
    3. Bunzel, Helle & Vogelsang, Timothy J., 2005. "Powerful Trend Function Tests That Are Robust to Strong Serial Correlation, With an Application to the Prebisch-Singer Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 381-394, October.
    4. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    5. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    6. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Simple, Robust, And Powerful Tests Of The Breaking Trend Hypothesis," Econometric Theory, Cambridge University Press, vol. 25(04), pages 995-1029, August.
    7. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    8. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    9. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(03), pages 587-636, June.
    10. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    11. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(06), pages 835-854, December.
    12. Peter Burridge & A. M. Robert Taylor, 2006. "Additive Outlier Detection Via Extreme-Value Theory," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 685-701, September.
    13. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-470, October.
    14. Sayginsoy, Özgen & Vogelsang, Timothy J., 2011. "Testing For A Shift In Trend At An Unknown Date: A Fixed-B Analysis Of Heteroskedasticity Autocorrelation Robust Ols-Based Tests," Econometric Theory, Cambridge University Press, vol. 27(05), pages 992-1025, October.
    15. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," PSE Working Papers halshs-00564897, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notgts:09/01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/tsnotuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.