IDEAS home Printed from https://ideas.repec.org/p/not/notgts/13-02.html
   My bibliography  Save this paper

Break date estimation for models with deterministic structural change

Author

Listed:
  • David I. Harvey
  • Stephen J. Leybourne

Abstract

In this paper we consider estimating the timing of a break in level and/or trend when the order of integration and autocorrelation properties of the data are unknown. For stationary innovations, break point estimation is commonly performed by minimizing the sum of squared residuals across all candidate break points, using a regression of the levels of the series on the assumed deterministic components. For unit root processes, the obvious modification is to use a first differenced version of the regression, while a further alternative in a stationary autoregressive setting is to consider a GLS-type quasi-differenced regression. Given uncertainty over which of these approaches to adopt in practice, we develop a hybrid break fraction estimator that selects from the levels-based estimator, the first-difference-based estimator, and a range of quasi-difference-based estimators, according to which achieves the global minimum sum of squared residuals. We establish the asymptotic properties of the estimators considered, and compare their performance in practically relevant sample sizes using simulation. We find that the new hybrid estimator has desirable asymptotic properties and performs very well in finite samples, providing a reliable approach to break date estimation without requiring decisions to be made regarding the autocorrelation properties of the data.

Suggested Citation

  • David I. Harvey & Stephen J. Leybourne, "undated". "Break date estimation for models with deterministic structural change," Discussion Papers 13/02, University of Nottingham, Granger Centre for Time Series Econometrics.
  • Handle: RePEc:not:notgts:13/02
    as

    Download full text from publisher

    File URL: http://www.nottingham.ac.uk/research/groups/grangercentre/documents/13-02.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    3. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    4. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    5. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Simple, Robust, And Powerful Tests Of The Breaking Trend Hypothesis," Econometric Theory, Cambridge University Press, vol. 25(04), pages 995-1029, August.
    6. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2010. "Robust methods for detecting multiple level breaks in autocorrelated time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 342-358, August.
    7. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    8. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Testing For A Unit Root In The Presence Of A Possible Break In Trend," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1545-1588, December.
    9. Jingjing Yang, 2012. "Break point estimators for a slope shift: levels versus first differences," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 154-169, February.
    10. Vogelsang, Timothy J, 1998. "Testing for a Shift in Mean without Having to Estimate Serial-Correlation Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 73-80, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notgts:13/02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/tsnotuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.