IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Optimal Aggregation of Consumer Ratings: An Application to Yelp.com

  • Weijia Dai
  • Ginger Z. Jin
  • Jungmin Lee
  • Michael Luca

Consumer review websites leverage the wisdom of the crowd, with each product being reviewed many times (some with more than 1,000 reviews). Because of this, the way in which information is aggregated is a central decision faced by consumer review websites. Given a set of reviews, what is the optimal way to construct an average rating? We offer a structural approach to answering this question, allowing for (1) reviewers to vary in stringency and accuracy, (2) reviewers to be influenced by existing reviews, and (3) product quality to change over time. Applying this approach to restaurant reviews from Yelp.com, we construct optimal ratings for all restaurants and compare them to the arithmetic averages displayed by Yelp. Depending on how we interpret the downward trend of reviews within a restaurant, we find 19.1-41.38% of the simple average ratings are more than 0.15 stars away from optimal ratings, and 5.33-19.1% are more than 0.25 stars away at the end of our sample period. Moreover, the deviation grows significantly as a restaurant accumulates reviews over time. This suggests that large gains could be made by implementing optimal ratings, especially as Yelp grows. Our algorithm can be flexibly applied to many different review settings.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nber.org/papers/w18567.pdf
Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 18567.

as
in new window

Length:
Date of creation: Nov 2012
Date of revision:
Handle: RePEc:nbr:nberwo:18567
Note: IO
Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Web page: http://www.nber.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John List & Jonathan Alevy & Michael Haigh, 2005. "Information cascades: Evidence from a field experiment with financial market professionals," Framed Field Experiments 00116, The Field Experiments Website.
  2. Ariely, Dan & Bracha, Anat & Meier, Stephan, 2007. "Doing Good or Doing Well? Image Motivation and Monetary Incentives in Behaving Prosocially," IZA Discussion Papers 2968, Institute for the Study of Labor (IZA).
  3. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
  4. Michael Luca & Jonathan Smith, 2013. "Salience in Quality Disclosure: Evidence from the U.S. News College Rankings," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 22(1), pages 58-77, 03.
  5. Yan Chen & F. Maxwell Harper & Joseph Konstan & Sherry Xin Li, 2010. "Social Comparisons and Contributions to Online Communities: A Field Experiment on MovieLens," American Economic Review, American Economic Association, vol. 100(4), pages 1358-98, September.
  6. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2007. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Working Papers 07-36, NET Institute.
  7. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
  8. Glazer, Jacob & McGuire, Thomas G. & Cao, Zhun & Zaslavsky, Alan, 2008. "Using global ratings of health plans to improve the quality of health care," Journal of Health Economics, Elsevier, vol. 27(5), pages 1182-1195, September.
  9. Nolan Miller & Paul Resnick & Richard Zeckhauser, 2005. "Eliciting Informative Feedback: The Peer-Prediction Method," Management Science, INFORMS, vol. 51(9), pages 1359-1373, September.
  10. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
  11. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
  12. Pope, Devin G., 2009. "Reacting to rankings: Evidence from "America's Best Hospitals"," Journal of Health Economics, Elsevier, vol. 28(6), pages 1154-1165, December.
  13. Banerjee, Abhijit V, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, MIT Press, vol. 107(3), pages 797-817, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18567. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.