IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v62y2016i12p3412-3427.html
   My bibliography  Save this article

Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud

Author

Listed:
  • Michael Luca

    () (Harvard Business School, Boston, Massachusetts 02163)

  • Georgios Zervas

    () (Boston University Questrom School of Business, Boston, Massachusetts 02215)

Abstract

Consumer reviews are now part of everyday decision making. Yet the credibility of these reviews is fundamentally undermined when businesses commit review fraud, creating fake reviews for themselves or their competitors. We investigate the economic incentives to commit review fraud on the popular review platform Yelp, using two complementary approaches and data sets. We begin by analyzing restaurant reviews that are identified by Yelp’s filtering algorithm as suspicious, or fake—and treat these as a proxy for review fraud (an assumption we provide evidence for). We present four main findings. First, roughly 16% of restaurant reviews on Yelp are filtered. These reviews tend to be more extreme (favorable or unfavorable) than other reviews, and the prevalence of suspicious reviews has grown significantly over time. Second, a restaurant is more likely to commit review fraud when its reputation is weak, i.e., when it has few reviews or it has recently received bad reviews. Third, chain restaurants—which benefit less from Yelp—are also less likely to commit review fraud. Fourth, when restaurants face increased competition, they become more likely to receive unfavorable fake reviews. Using a separate data set, we analyze businesses that were caught soliciting fake reviews through a sting conducted by Yelp. These data support our main results and shed further light on the economic incentives behind a business’s decision to leave fake reviews. This paper was accepted by Lorin Hitt, information systems .

Suggested Citation

  • Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
  • Handle: RePEc:inm:ormnsc:v:62:y:2016:i:12:p:3412-3427
    DOI: 10.1287/mnsc.2015.2304
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2015.2304
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mark Duggan & Steven D. Levitt, 2002. "Winning Isn't Everything: Corruption in Sumo Wrestling," American Economic Review, American Economic Association, vol. 92(5), pages 1594-1605, December.
    2. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    3. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    4. Ginger Zhe Jin & Phillip Leslie, 2009. "Reputational Incentives for Restaurant Hygiene," American Economic Journal: Microeconomics, American Economic Association, vol. 1(1), pages 237-267, February.
    5. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:62:y:2016:i:12:p:3412-3427. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.