IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp3478.html

The Treatment Effect, the Cross Difference, and the Interaction Term in Nonlinear “Difference-in-Differences” Models

Author

Listed:
  • Puhani, Patrick A.

    (Leibniz University of Hannover)

Abstract

I demonstrate that Ai and Norton’s (2003) point about cross differences is not relevant for the estimation of the treatment effect in nonlinear “difference-in-differences” models such as probit, logit or tobit, because the cross difference is not equal to the treatment effect, which is the parameter of interest. In a nonlinear “difference-in-differences” model, the treatment effect is the cross difference of the conditional expectation of the observed outcome minus the cross difference of the conditional expectation of the potential outcome without treatment. Unlike in the linear model, the latter cross difference is not zero in the nonlinear model. It follows that the sign of the treatment effect in a nonlinear “difference-in-differences” model with a strictly monotonic transformation function is equal to the sign of the coefficient of the interaction term of the time and treatment group indicators. The treatment effect is simply the incremental effect of the coefficient of the interaction term.

Suggested Citation

  • Puhani, Patrick A., 2008. "The Treatment Effect, the Cross Difference, and the Interaction Term in Nonlinear “Difference-in-Differences” Models," IZA Discussion Papers 3478, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp3478
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp3478.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • H0 - Public Economics - - General
    • I0 - Health, Education, and Welfare - - General
    • J0 - Labor and Demographic Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp3478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.