IDEAS home Printed from https://ideas.repec.org/p/ipg/wpaper/2014-142.html
   My bibliography  Save this paper

Commodity Price Correlation and Time varying Hedge Ratios

Author

Listed:
  • Amine Lahiani
  • Khaled Guesmi

Abstract

This paper examines the price volatility and hedging behavior of commodity futures indices and stock market indices. We investigate the weekly hedging strategies generated by return-based and range-based asymmetric dynamic conditional correlation (DCC) pr

Suggested Citation

  • Amine Lahiani & Khaled Guesmi, 2014. "Commodity Price Correlation and Time varying Hedge Ratios," Working Papers 2014-142, Department of Research, Ipag Business School.
  • Handle: RePEc:ipg:wpaper:2014-142
    as

    Download full text from publisher

    File URL: https://faculty-research.ipag.edu/wp-content/uploads/recherche/WP/IPAG_WP_2014_142.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    2. Choudhry, Taufiq, 2003. "Short-run deviations and optimal hedge ratio: evidence from stock futures," Journal of Multinational Financial Management, Elsevier, vol. 13(2), pages 171-192, April.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Ray Chou & Chun-Chou Wu & Nathan Liu, 2009. "Forecasting time-varying covariance with a range-based dynamic conditional correlation model," Review of Quantitative Finance and Accounting, Springer, vol. 33(4), pages 327-345, November.
    5. Robert J. Aumann & Roberto Serrano, 2008. "An Economic Index of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
    6. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
    7. Lien, Donald, 2004. "Cointegration and the optimal hedge ratio: the general case," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(5), pages 654-658, December.
    8. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    9. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    10. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    11. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    12. Lien, Donald & Tse, Y K, 2002. "Some Recent Developments in Futures Hedging," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 357-396, July.
    13. Monica Billio & Massimiliano Caporin & Michele Gobbo, 2006. "Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(2), pages 123-130, March.
    14. Chen, Yi-Ting & Ho, Keng-Yu & Tzeng, Larry Y., 2014. "Riskiness-minimizing spot-futures hedge ratio," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 154-164.
    15. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ipg:wpaper:2014-546 is not listed on IDEAS
    2. repec:ipg:wpaper:2014-444 is not listed on IDEAS
    3. repec:ipg:wpaper:2014-415 is not listed on IDEAS
    4. repec:ipg:wpaper:2014-561 is not listed on IDEAS
    5. repec:ipg:wpaper:2014-569 is not listed on IDEAS
    6. repec:ipg:wpaper:2014-481 is not listed on IDEAS
    7. repec:ipg:wpaper:2014-394 is not listed on IDEAS
    8. repec:ipg:wpaper:2014-486 is not listed on IDEAS
    9. repec:ipg:wpaper:2014-510 is not listed on IDEAS
    10. repec:ipg:wpaper:2014-604 is not listed on IDEAS
    11. repec:ipg:wpaper:2014-511 is not listed on IDEAS
    12. repec:ipg:wpaper:2014-451 is not listed on IDEAS
    13. repec:ipg:wpaper:2014-545 is not listed on IDEAS
    14. repec:ipg:wpaper:2014-468 is not listed on IDEAS
    15. repec:ipg:wpaper:2014-452 is not listed on IDEAS
    16. repec:ipg:wpaper:2014-480 is not listed on IDEAS
    17. repec:ipg:wpaper:2014-531 is not listed on IDEAS
    18. repec:ipg:wpaper:2014-495 is not listed on IDEAS
    19. repec:ipg:wpaper:2014-412 is not listed on IDEAS
    20. repec:ipg:wpaper:2014-470 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    2. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    3. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Documentos de Trabajo del ICAE 2013-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, Open Access Journal, vol. 1(1), pages 1-12, June.
    6. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    7. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    8. Hou, Yang & Holmes, Mark, 2017. "On the effects of static and autoregressive conditional higher order moments on dynamic optimal hedging," MPRA Paper 82000, University Library of Munich, Germany.
    9. Hakim, M.S. & McAleer, M.J., 2009. "Dynamic Conditional Correlations in International Stock, Bond and Foreign Exchange Markets: Emerging Markets Evidence," Econometric Institute Research Papers EI 2009-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Tsuji, Chikashi, 2020. "Correlation and spillover effects between the US and international banking sectors: New evidence and implications for risk management," International Review of Financial Analysis, Elsevier, vol. 70(C).
    11. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    12. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    13. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    14. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    15. Waël Louhichi & Hassen Rais, 2019. "Refinement of the hedging ratio using copula-GARCH models," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 403-411, September.
    16. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
    17. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    18. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    19. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    20. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.

    More about this item

    Keywords

    Range-based Dynamic Conditional Correlation; Downside Risk; Transaction Costs;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipg:wpaper:2014-142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ingmar Schumacher). General contact details of provider: http://edirc.repec.org/data/ipagpfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.