IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2019-109.html

FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk

Author

Listed:
  • Majid Bazarbash

Abstract

Recent advances in digital technology and big data have allowed FinTech (financial technology) lending to emerge as a potentially promising solution to reduce the cost of credit and increase financial inclusion. However, machine learning (ML) methods that lie at the heart of FinTech credit have remained largely a black box for the nontechnical audience. This paper contributes to the literature by discussing potential strengths and weaknesses of ML-based credit assessment through (1) presenting core ideas and the most common techniques in ML for the nontechnical audience; and (2) discussing the fundamental challenges in credit risk analysis. FinTech credit has the potential to enhance financial inclusion and outperform traditional credit scoring by (1) leveraging nontraditional data sources to improve the assessment of the borrower’s track record; (2) appraising collateral value; (3) forecasting income prospects; and (4) predicting changes in general conditions. However, because of the central role of data in ML-based analysis, data relevance should be ensured, especially in situations when a deep structural change occurs, when borrowers could counterfeit certain indicators, and when agency problems arising from information asymmetry could not be resolved. To avoid digital financial exclusion and redlining, variables that trigger discrimination should not be used to assess credit rating.

Suggested Citation

  • Majid Bazarbash, 2019. "FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk," IMF Working Papers 2019/109, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2019/109
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=46883
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Fuster & Matthew Plosser & Philipp Schnabl & James Vickery, 2019. "The Role of Technology in Mortgage Lending," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1854-1899.
    2. Stijn Claessens & Jon Frost & Grant Turner & Feng Zhu, 2018. "Fintech credit markets around the world: size, drivers and policy issues," BIS Quarterly Review, Bank for International Settlements, September.
    3. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    4. Peter Gomber & Jascha-Alexander Koch & Michael Siering, 2017. "Digital Finance and FinTech: current research and future research directions," Journal of Business Economics, Springer, vol. 87(5), pages 537-580, July.
    5. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    6. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    7. Buchak, Greg & Matvos, Gregor & Piskorski, Tomasz & Seru, Amit, 2018. "Fintech, regulatory arbitrage, and the rise of shadow banks," Journal of Financial Economics, Elsevier, vol. 130(3), pages 453-483.
    8. Ms. Inutu Lukonga, 2018. "Fintech, Inclusive Growth and Cyber Risks: Focus on the MENAP and CCA Regions," IMF Working Papers 2018/201, International Monetary Fund.
    9. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    10. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    11. de Roure, Calebe & Pelizzon, Loriana & Tasca, Paolo, 2016. "How does P2P lending fit into the consumer credit market?," Discussion Papers 30/2016, Deutsche Bundesbank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoting & Hou, Siyuan & Kyaw, Khine & Xue, Xupeng & Liu, Xueqin, 2023. "Exploring the determinants of Fintech Credit: A comprehensive analysis," Economic Modelling, Elsevier, vol. 126(C).
    2. Pacelli, Vincenzo & Miglietta, Federica & Foglia, Matteo, 2022. "The extreme risk connectedness of the new financial system: European evidence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    3. Cornelli, Giulio & Frost, Jon & Gambacorta, Leonardo & Rau, P. Raghavendra & Wardrop, Robert & Ziegler, Tania, 2023. "Fintech and big tech credit: Drivers of the growth of digital lending," Journal of Banking & Finance, Elsevier, vol. 148(C).
    4. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    5. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    6. Vives, Xavier & Ye, Zhiqiang, 2025. "Fintech entry, lending market competition, and welfare," Journal of Financial Economics, Elsevier, vol. 168(C).
    7. Xia, Yanchun & Qiao, Zhilin & Xie, Guanghua, 2022. "Corporate resilience to the COVID-19 pandemic: The role of digital finance," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    8. Tan, Changchun & Mo, Lingyu & Wu, Xiaomeng & Zhou, Peng, 2024. "Fintech development and corporate credit risk: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 92(C).
    9. Guo, Pin & Zhang, Cheng, 2023. "The impact of bank FinTech on liquidity creation: Evidence from China," Research in International Business and Finance, Elsevier, vol. 64(C).
    10. Salma Rhanoui, 2022. "Banking Goes Digital: The Main Determinants of the Clients Satisfaction and Trust toward Fintech-Based Services," International Journal of Economics and Financial Issues, Econjournals, vol. 12(5), pages 10-20, September.
    11. Boot, Arnoud & Hoffmann, Peter & Laeven, Luc & Ratnovski, Lev, 2021. "Fintech: what’s old, what’s new?," Journal of Financial Stability, Elsevier, vol. 53(C).
    12. Bu, Ya & Du, Xin & Wang, Yuting & Liu, Shuyu & Tang, Min & Li, Hui, 2024. "Digital inclusive finance: A lever for SME financing?," International Review of Financial Analysis, Elsevier, vol. 93(C).
    13. Bertsch, Christoph & Hull, Isaiah & Qi, Yingjie & Zhang, Xin, 2020. "Bank misconduct and online lending," Journal of Banking & Finance, Elsevier, vol. 116(C).
    14. Kakhkharov, Jakhongir & Bianchi, Robert J., 2022. "COVID-19 and policy responses: Early evidence in banks and FinTech stocks," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    15. Tobias Berg & Andreas Fuster & Manju Puri, 2022. "FinTech Lending," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 187-207, November.
    16. Cuadros-Solas, Pedro J. & Cubillas, Elena & Salvador, Carlos, 2023. "Does alternative digital lending affect bank performance? Cross-country and bank-level evidence," International Review of Financial Analysis, Elsevier, vol. 90(C).
    17. Qihang Xue & Caiquan Bai & Weiwei Xiao, 2022. "Fintech and corporate green technology innovation: Impacts and mechanisms," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3898-3914, December.
    18. Ji, Yu & Shi, Lina & Zhang, Shunming, 2022. "Digital finance and corporate bankruptcy risk: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    19. Lei Lu & Jianxing Wei & Weixing Wu & Yi Zhou, 2023. "Pricing strategies in BigTech lending: Evidence from China," Financial Management, Financial Management Association International, vol. 52(2), pages 333-374, June.
    20. Olson, Luke M. & Qi, Min & Zhang, Xiaofei & Zhao, Xinlei, 2021. "Machine learning loss given default for corporate debt," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 144-159.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2019/109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.