IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v34y2010i10p2510-2517.html
   My bibliography  Save this article

Forecasting bank loans loss-given-default

Author

Listed:
  • Bastos, João A.

Abstract

With the advent of the new Basel Capital Accord, banking organizations are invited to estimate credit risk capital requirements using an internal ratings based approach. In order to be compliant with this approach, institutions must estimate the loss-given-default, the fraction of the credit exposure that is lost if the borrower defaults. This study evaluates the ability of a parametric fractional response regression and a nonparametric regression tree model to forecast bank loan credit losses. The out-of-sample predictive ability of these models is evaluated at several recovery horizons after the default event. The out-of-time predictive ability is also estimated for a recovery horizon of 1 year. The performance of the models is benchmarked against recovery estimates given by historical averages. The results suggest that regression trees are an interesting alternative to parametric models in modeling and forecasting loss-given-default.

Suggested Citation

  • Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
  • Handle: RePEc:eee:jbfina:v:34:y:2010:i:10:p:2510-2517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(10)00137-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    3. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    4. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    5. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    6. Qi, Min & Yang, Xiaolong, 2009. "Loss given default of high loan-to-value residential mortgages," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 788-799, May.
    7. Grunert, Jens & Weber, Martin, 2009. "Recovery rates of commercial lending: Empirical evidence for German companies," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 505-513, March.
    8. Jankowitsch, Rainer & Pullirsch, Rainer & Veza, Tanja, 2008. "The delivery option in credit default swaps," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1269-1285, July.
    9. repec:bla:jfinan:v:44:y:1989:i:4:p:909-22 is not listed on IDEAS
    10. Stefano Caselli & Stefano Gatti & Francesca Querci, 2008. "The Sensitivity of the Loss Given Default Rate to Systematic Risk: New Empirical Evidence on Bank Loans," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 1-34, August.
    11. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    2. Gürtler, Marc & Hibbeln, Martin, 2013. "Improvements in loss given default forecasts for bank loans," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2354-2366.
    3. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    4. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    5. Hibbeln, Martin & Gürtler, Marc, 2011. "Pitfalls in modeling loss given default of bank loans," Working Papers IF35V1, Technische Universität Braunschweig, Institute of Finance.
    6. Khieu, Hinh D. & Mullineaux, Donald J. & Yi, Ha-Chin, 2012. "The determinants of bank loan recovery rates," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 923-933.
    7. Han, Chulwoo & Jang, Youngmin, 2013. "Effects of debt collection practices on loss given default," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 21-31.
    8. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    9. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    10. Tomas Konecny & Jakub Seidler & Aelta Belyaeva & Konstantin Belyaev, 2017. "The Time Dimension of the Links Between Loss Given Default and the Macroeconomy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 67(6), pages 462-491, October.
    11. João Bastos, 2014. "Ensemble Predictions of Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(2), pages 177-193, October.
    12. Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
    13. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    14. Raffaella Calabrese, 2012. "Estimating bank loans loss given default by generalized additive models," Working Papers 201224, Geary Institute, University College Dublin.
    15. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Is it obligor or instrument that explains recovery rate: Evidence from US corporate bond," Journal of Financial Stability, Elsevier, vol. 28(C), pages 1-15.
    16. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Corporate Loan Recovery Rates under Downturn Conditions in a Developing Economy: Evidence from Zimbabwe," Risks, MDPI, vol. 10(10), pages 1-24, October.
    17. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    18. Abu, Benjamin Musah & Domanban, Paul Bata & Haruna, Issahaku, 2017. "Microcredit Loan Repayment Default among Small Scale Enterprises: A Double Hurdle Approach," MPRA Paper 101576, University Library of Munich, Germany, revised 12 Mar 2017.
    19. Nithi Sopitpongstorn & Param Silvapulle & Jiti Gao, 2017. "Local logit regression for recovery rate," Monash Econometrics and Business Statistics Working Papers 19/17, Monash University, Department of Econometrics and Business Statistics.
    20. Raffaella Calabrese, 2012. "Regression Model for Proportions with Probability Masses at Zero and One," Working Papers 201209, Geary Institute, University College Dublin.

    More about this item

    Keywords

    G17 G21 G33 Loss-given-default Forecasting Bank loan Fractional response regression Regression tree;

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:34:y:2010:i:10:p:2510-2517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.