IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/02-10.html
   My bibliography  Save this paper

Identification of causal effects on binary outcomes using structural mean models

Author

Listed:
  • Paul S. Clarke

    (Institute for Fiscal Studies)

  • Frank Windmeijer

    () (Institute for Fiscal Studies and University of Bristol)

Abstract

Structural mean models (SMMs) were originally formulated to estimate causal effects among those selecting treatment in randomised controlled trials affected by non-ignorable non-compliance. It has already been established that SMM estimators identify these causal effects in randomised placebo-controlled trials where no-one assigned to the control group can receive the treatment. However, SMMs are starting to be used for randomised controlled trials without placebo-controls, and for instrumental variable analysis of observational studies; for example, Mendelian randomisation studies, and studies where physicians select patients' treatments. In such scenarios, identification depends on the assumption of no effect modification, namely, the causal effect is equal for the subgroups defined by the instrument. We consider the nature of this assumption by showing how it depends crucially on the underlying causal model generating the data, which in applications is almost always unknown. If its no effect modification assumption does not hold then an SMM estimator does not estimate its associated causal effect. However, if treatment selection is monotonic we highlight that additive and multiplicative SMMs do identify local (or complier) causal effects, but that the double-logistic SMM estimator does not without further assumptions. We clarify the proper interpretation of inferences from SMM estimators using a data example and simulation study.

Suggested Citation

  • Paul S. Clarke & Frank Windmeijer, 2010. "Identification of causal effects on binary outcomes using structural mean models," CeMMAP working papers CWP02/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:02/10
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0210.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. James Robins & Andrea Rotnitzky, 2004. "Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models," Biometrika, Biometrika Trust, vol. 91(4), pages 763-783, December.
    2. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 2-16, January.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    5. Paul S. Clarke & Frank Windmeijer, 2012. "Instrumental Variable Estimators for Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1638-1652, December.
    6. Moodie, Erica E. M. & Platt, Robert W. & Kramer, Michael S., 2009. "Estimating Response-Maximized Decision Rules With Applications to Breastfeeding," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 155-165.
    7. S. Vansteelandt & E. Goetghebeur, 2003. "Causal inference with generalized structural mean models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 817-835.
    8. Mark J. van der Laan & Alan Hubbard & Nicholas P. Jewell, 2007. "Estimation of treatment effects in randomized trials with non-compliance and a dichotomous outcome," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 463-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:jorssa:v:180:y:2017:i:2:p:569-586 is not listed on IDEAS
    2. Paul S. Clarke & Tom M. Palmer & Frank Windmeijer, 2011. "Estimating structural mean models with multiple instrumental variables using the generalised method of moments," CeMMAP working papers CWP28/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Masataka Taguri & Yutaka Matsuyama & Yasuo Ohashi, 2014. "Model selection criterion for causal parameters in structural mean models based on a quasi-likelihood," Biometrics, The International Biometric Society, vol. 70(3), pages 721-730, September.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:02/10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.