IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Identification of Causal Effects on Binary Outcomes Using Structural Mean Models

  • Paul Clarke
  • Frank Windmeijer

    ()

Structural mean models (SMMs) are used to estimate causal effects among those selecting treatment in randomised controlled trials affected by non-ignorable non-compliance. These causal effects can be identified by assuming that there is no effect modification, namely, that the causal effect is equal for the treated subgroups randomised to treatment and to control. By analysing simple structural models for binary outcomes, we argue that the no effect modification assumption does not hold in general, and so SMMs do not estimate causal effects for the treated. An exception is for designs in which those randomised to control can be completely excluded from receiving the treatment. However, when there is non-compliance in the control arm, local (or complier) causal effects can be identified provided that the further assumption of monotonic selection into treatment holds. We demonstrate these issues using numerical examples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bristol.ac.uk/cmpo/publications/papers/2009/wp217.pdf
Download Restriction: no

Paper provided by Department of Economics, University of Bristol, UK in its series The Centre for Market and Public Organisation with number 09/217.

as
in new window

Length: 20 pages
Date of creation: Jun 2009
Date of revision:
Handle: RePEc:bri:cmpowp:09/217
Contact details of provider: Postal: 2 Priory Road, Bristol, BS8 1TX
Phone: 0117 33 10799
Fax: 0117 33 10705
Web page: http://www.bris.ac.uk/cmpo/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-75, March.
  2. S. Vansteelandt & E. Goetghebeur, 2003. "Causal inference with generalized structural mean models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 817-835.
  3. Paul Clarke & Frank Windmeijer, 2010. "Instrumental Variable Estimators for Binary Outcomes," The Centre for Market and Public Organisation 10/239, Department of Economics, University of Bristol, UK.
  4. Joshua Angrist, 1999. "Estimation of Limited-Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," Working papers 99-31, Massachusetts Institute of Technology (MIT), Department of Economics.
  5. Moodie, Erica E. M. & Platt, Robert W. & Kramer, Michael S., 2009. "Estimating Response-Maximized Decision Rules With Applications to Breastfeeding," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 155-165.
  6. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
  7. James Robins & Andrea Rotnitzky, 2004. "Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models," Biometrika, Biometrika Trust, vol. 91(4), pages 763-783, December.
  8. Mark J. van der Laan & Alan Hubbard & Nicholas P. Jewell, 2007. "Estimation of treatment effects in randomized trials with non-compliance and a dichotomous outcome," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 463-482.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bri:cmpowp:09/217. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.