IDEAS home Printed from
   My bibliography  Save this article

Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models


  • James Robins
  • Andrea Rotnitzky


We consider estimation of the received treatment effect on a dichotomous outcome in randomised trials with non-compliance. We explore inference about the parameters of the structural mean models of Robins (1994, 1997) and Robins et al. (1999). We show that, in contrast to the additive and multiplicative structural mean models for continuous and count outcomes, unbiased estimating functions for a nonzero (structural) treatment effect parameter do not exist in the presence of many continuous and discrete baseline covariates, even when the randomisation probabilities are known. The best that can be hoped for are estimators, such as those proposed in this paper, that are guaranteed both to estimate consistently the (null) treatment effect when the null hypothesis of no treatment effect is true and to have small bias when the true treatment effect is close to but not equal to zero. Copyright 2004, Oxford University Press.

Suggested Citation

  • James Robins & Andrea Rotnitzky, 2004. "Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models," Biometrika, Biometrika Trust, vol. 91(4), pages 763-783, December.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:763-783

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kern, Holger & Hainmueller, Jens, 2007. "Opium for the Masses: How Foreign Free Media Can Stabilize Authoritarian Regimes," MPRA Paper 2702, University Library of Munich, Germany.
    2. He Jiwei & Stephens-Shields Alisa & Joffe Marshall, 2015. "Structural Nested Mean Models to Estimate the Effects of Time-Varying Treatments on Clustered Outcomes," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 203-222, November.
    3. Paul S. Clarke & Tom M. Palmer & Frank Windmeijer, 2011. "Estimating structural mean models with multiple instrumental variables using the generalised method of moments," CeMMAP working papers CWP28/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Paul Clarke & Frank Windmeijer, 2009. "Identification of Causal Effects on Binary Outcomes Using Structural Mean Models," The Centre for Market and Public Organisation 09/217, Department of Economics, University of Bristol, UK.
    5. Joffe Marshall M & Small Dylan & Ten Have Thomas & Brunelli Steve & Feldman Harold I, 2008. "Extended Instrumental Variables Estimation for Overall Effects," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-20, April.
    6. Hua Chen & Zhi Geng & Xiao-Hua Zhou, 2009. "Identifiability and Estimation of Causal Effects in Randomized Trials with Noncompliance and Completely Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 65(3), pages 675-682, September.
    7. Guido Imbens, 2014. "Instrumental Variables: An Econometrician's Perspective," NBER Working Papers 19983, National Bureau of Economic Research, Inc.
    8. Ali Reza Soltanian & Soghrat Faghihzadeh, 2012. "A generalization of the Grizzle model to the estimation of treatment effects in crossover trials with non-compliance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1037-1048, October.
    9. Mark van der Laan & Alan Hubbard & Nicholas Jewell, 2004. "Estimation of Treatment Effects in Randomized Trials with Noncompliance and a Dichotomous Outcome," U.C. Berkeley Division of Biostatistics Working Paper Series 1157, Berkeley Electronic Press.
    10. repec:bpj:causin:v:4:y:2016:i:2:p:0:n:1 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:763-783. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.