IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2014-006.html
   My bibliography  Save this paper

A consistent two-factor model for pricing temperature derivatives

Author

Listed:
  • Andreas Groll
  • Brenda López-Cabrera
  • Thilo Meyer-Brandis

Abstract

We analyze a consistent two-factor model for pricing temperature derivatives that incorporates the forward looking information available in the market by specifying a model for the dynamics of the complete meteorological forecast curve. The two-factor model is a generalization of the Nelson-Siegel curve model by allowing factors with mean-reversion to a stochastic mean for structural changes and seasonality for periodic patterns. Based on the outcomes of a statistical analysis of forecast data we conclude that the two-factor model captures well the stylized features of temperature forecast curves. In particular, a functional principal component analysis reveals that the model re ects reasonably well the dynamical structure of forecast curves by decomposing their shapes into a tilting and a bending factor. We continue by developing an estimation procedure for the model, before we derive explicit prices for temperature derivatives and calibrate the market price of risk (MPR) from temperature futures derivatives (CAT, HDD, CDD) traded at the Chicago Mercantile Exchange (CME). The factor model shows that the behavior of the implied MPR for futures traded in and out of the measurement period is more stable than other estimates obtained in the literature. This con rms that at least parts of the irregularity of the MPR is not due to irregular risk perception but rather due to information misspecification. Similar to temperature derivatives, this approach can be used for pricing other non-tradable assets.

Suggested Citation

  • Andreas Groll & Brenda López-Cabrera & Thilo Meyer-Brandis, 2014. "A consistent two-factor model for pricing temperature derivatives," SFB 649 Discussion Papers SFB649DP2014-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-006
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2014-006.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gilli, Manfred & Maringer, Dietmar & Schumann, Enrico, 2011. "Numerical Methods and Optimization in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780123756626.
    2. FRED ESPEN BENTH & JŪRATĖ SALTYTĖ BENTH & STEEN KOEKEBAKKER, 2007. "Putting a Price on Temperature," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 746-767.
    3. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    4. Jewson,Stephen & Brix,Anders, 2005. "Weather Derivative Valuation," Cambridge Books, Cambridge University Press, number 9780521843713, May.
    5. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    6. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    7. Benth, Fred Espen & Biegler-König, Richard & Kiesel, Rüdiger, 2013. "An empirical study of the information premium on electricity markets," Energy Economics, Elsevier, vol. 36(C), pages 55-77.
    8. Melanie Cao & Jason Wei, 2004. "Weather derivatives valuation and market price of weather risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1065-1089, November.
    9. Wolfgang Karl Härdle & Brenda López Cabrera & Ostap Okhrin & Weining Wang, 2016. "Localizing Temperature Risk," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1491-1508, October.
    10. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    11. Wolfgang Karl Härdle & Brenda López-Cabrera & Matthias Ritter, 2012. "Forecast based Pricing of Weather Derivatives," SFB 649 Discussion Papers SFB649DP2012-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    12. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    13. Matthias Ritter & Oliver Mußhoff & Martin Odening, 2010. "Meteorological forecasts and the pricing of weather derivatives," SFB 649 Discussion Papers SFB649DP2010-043, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Benth, Fred Espen & Cartea, Álvaro & Kiesel, Rüdiger, 2008. "Pricing forward contracts in power markets by the certainty equivalence principle: Explaining the sign of the market risk premium," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2006-2021, October.
    15. Manfred Gilli & Stefan Große & Enrico Schumann, 2010. "Calibrating the Nelson–Siegel–Svensson model," Working Papers 031, COMISEF.
    16. Patrick L. Brockett & Mulong Wang & Chuanhou Yang & Hong Zou, 2006. "Portfolio Effects and Valuation of Weather Derivatives," The Financial Review, Eastern Finance Association, vol. 41(1), pages 55-76, February.
    17. Dwight R. Sanders, 2004. "Pricing Weather Derivatives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1005-1017.
    18. Wolfgang Härdle & Brenda López Cabrera, 2009. "Implied Market Price of Weather Risk," SFB 649 Discussion Papers SFB649DP2009-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    19. Hung‐Hsi Huang & Yung‐Ming Shiu & Pei‐Syun Lin, 2008. "HDD and CDD option pricing with market price of weather risk for Taiwan," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(8), pages 790-814, August.
    20. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awdesch Melzer & Wolfgang K. Härdle & Brenda López Cabrera, 2017. "Pricing Green Financial Products," SFB 649 Discussion Papers SFB649DP2017-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    factor models; consistency; pricing and hedging; weather derivatives; market price of risk;

    JEL classification:

    • G19 - Financial Economics - - General Financial Markets - - - Other
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • N23 - Economic History - - Financial Markets and Institutions - - - Europe: Pre-1913
    • N53 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - Europe: Pre-1913
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.