IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2012-027.html
   My bibliography  Save this paper

Forecast based Pricing of Weather Derivatives

Author

Listed:
  • Wolfgang Karl Härdle
  • Brenda López-Cabrera
  • Matthias Ritter

Abstract

Forecasting based pricing of Weather Derivatives (WDs) is a new approach in valuation of contingent claims on nontradable underlyings. Standard techniques are based on historical weather data. Forward-looking information such as meteorological forecasts or the implied market price of risk (MPR) are often not incorporated. We adopt a risk neutral approach (for each location) that allows the incorporation of meteorological forecasts in the framework of WD pricing. We study weather Risk Premiums (RPs) implied from either the information MPR gain or the meteorological forecasts. The size of RPs is interesting for investors and issuers of weather contracts to take advantages of geographic diversification, hedging effects and price determinations. By conducting an empirical analysis to London and Rome WD data traded at the Chicago Mercantile Exchange (CME), we find out that either incorporating the MPR or the forecast outperforms the standard pricing techniques.

Suggested Citation

  • Wolfgang Karl Härdle & Brenda López-Cabrera & Matthias Ritter, 2012. "Forecast based Pricing of Weather Derivatives," SFB 649 Discussion Papers SFB649DP2012-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2012-027
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-027.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fred Espen Benth & Jurate Saltyte-Benth, 2005. "Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 53-85.
    2. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    3. Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
    4. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    7. Matthias Ritter & Oliver Mußhoff & Martin Odening, 2010. "Meteorological forecasts and the pricing of weather derivatives," SFB 649 Discussion Papers SFB649DP2010-043, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    8. Fred Benth & Wolfgang Karl Härdle & Brenda López Cabrera, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers SFB649DP2009-046, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Wolfgang Härdle & Brenda López Cabrera, 2009. "Implied Market Price of Weather Risk," SFB 649 Discussion Papers SFB649DP2009-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenda López Cabrera & Martin Odening & Matthias Ritter, 2013. "Pricing Rainfall Derivatives at the CME," SFB 649 Discussion Papers SFB649DP2013-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    3. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    4. Sinha, Pankaj & Nagarnaik, Ankit & Raj, Kislay & Suman, Vineeta, 2016. "Forecasting United States Presidential election 2016 using multiple regression models," MPRA Paper 74641, University Library of Munich, Germany, revised 17 Oct 2016.
    5. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    6. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
    7. repec:spr:cliomt:v:11:y:2017:i:3:d:10.1007_s11698-016-0146-5 is not listed on IDEAS

    More about this item

    Keywords

    Weather derivatives; seasonal variation; temperature; risk premia;

    JEL classification:

    • G19 - Financial Economics - - General Financial Markets - - - Other
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • N23 - Economic History - - Financial Markets and Institutions - - - Europe: Pre-1913
    • N53 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - Europe: Pre-1913
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2012-027. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.