IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i3p489-500.html
   My bibliography  Save this article

Temperature models for pricing weather derivatives

Author

Listed:
  • Frank Schiller
  • Gerold Seidler
  • Maximilian Wimmer

Abstract

We present four models for predicting temperatures that can be used for pricing weather derivatives. Three of the models have been suggested in previous literature, and we propose another model that uses splines to remove trend and seasonality effects from temperature time series in a flexible way. Using historical temperature data from 35 weather stations across the United States, we test the performance of the models by evaluating virtual heating degree days (HDD) and cooling degree days (CDD) contracts. We find that all models perform better when predicting HDD indices than predicting CDD indices. However, all models based on a daily simulation approach significantly underestimate the variance of the errors.

Suggested Citation

  • Frank Schiller & Gerold Seidler & Maximilian Wimmer, 2012. "Temperature models for pricing weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 489-500, March.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:489-500
    DOI: 10.1080/14697681003777097
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697681003777097
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697681003777097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth & Jurate Saltyte-Benth, 2005. "Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 53-85.
    2. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    3. A. Zapranis & A. Alexandridis, 2008. "Modelling the Temperature Time-dependent Speed of Mean Reversion in the Context of Weather Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 355-386.
    4. Jewson,Stephen & Brix,Anders With contributions by-Name:Ziehmann,Christine, 2005. "Weather Derivative Valuation," Cambridge Books, Cambridge University Press, number 9780521843713.
    5. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    6. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    7. Melanie Cao & Jason Wei, 2004. "Weather derivatives valuation and market price of weather risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1065-1089, November.
    8. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    9. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    10. Fred ESPEN Benth & Jurate saltyte Benth, 2007. "The volatility of temperature and pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 553-561.
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Teddy Oetomo & Max Stevenson, 2005. "Hot or Cold? A Comparison of Different Approaches to the Pricing of Weather Derivatives," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(2), pages 101-133, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    2. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    3. Baojing Sun & G. Cornelis van Kooten, 2014. "Financial Weather Options for Crop Production," Working Papers 2014-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    4. Sun, Baojing, 2017. "Financial Weather Derivatives for Corn Production in Northeastern China: Modelling the Underlying Weather Index," Working Papers 257083, University of Victoria, Resource Economics and Policy.
    5. Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
    6. Sun, Baojing, 2017. "Financial Weather Derivatives for Corn Production in Northeastern China: Modelling the underlying Weather Index," Working Papers 263197, University of Victoria, Resource Economics and Policy.
    7. Žmuk Berislav & Kovač Matej, 2020. "Ornstein-Uhlenbeck process and GARCH model for temperature forecasting in weather derivatives valuation," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 6(1), pages 27-42, May.
    8. Lu Zong & Manuela Ender, 2018. "Comparison of Stochastic and Spline Models for Temperature‐based Derivatives in China," Pacific Economic Review, Wiley Blackwell, vol. 23(4), pages 547-589, October.
    9. Evarest Emmanuel & Berntsson Fredrik & Singull Martin & Yang Xiangfeng, 2018. "Weather derivatives pricing using regime switching model," Monte Carlo Methods and Applications, De Gruyter, vol. 24(1), pages 13-27, March.
    10. Baojing Sun, 2017. "Financial Weather Derivatives for Corn Production in Northeastern China: Modelling the underlying Weather Index," Working Papers 2017-05, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    11. Martina Bobriková, 2016. "Weather Risk Management in Agriculture," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 64(4), pages 1303-1309.
    12. Bhattacharya, Saptarshi & Gupta, Aparna & Kar, Koushik & Owusu, Abena, 2020. "Risk management of renewable power producers from co-dependencies in cash flows," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1081-1093.
    13. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    14. Lu Zong & Manuela Ender, 2016. "Spatially-Aggregated Temperature Derivatives: Agricultural Risk Management in China," IJFS, MDPI, vol. 4(3), pages 1-17, September.
    15. Sun, Baojing & van Kooten, G. Cornelis, 2015. "Financial weather derivatives for corn production in Northern China: A comparison of pricing methods," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 201-209.
    16. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    17. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, January.
    3. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    4. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    5. Alexandridis, Antonis K. & Kampouridis, Michael & Cramer, Sam, 2017. "A comparison of wavelet networks and genetic programming in the context of temperature derivatives," International Journal of Forecasting, Elsevier, vol. 33(1), pages 21-47.
    6. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    7. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    8. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    9. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    10. Andrea Barth & Fred Espen Benth & Jurgen Potthoff, 2011. "Hedging of Spatial Temperature Risk with Market-Traded Futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(2), pages 93-117.
    11. Heng Xiong & Rogemar Mamon, 2018. "Putting a price tag on temperature," Computational Management Science, Springer, vol. 15(2), pages 259-296, June.
    12. Wei Yuan & Ahmet Göncü & Giray Ökten, 2015. "Estimating sensitivities of temperature-based weather derivatives," Applied Economics, Taylor & Francis Journals, vol. 47(19), pages 1942-1955, April.
    13. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    14. Elias, R.S. & Wahab, M.I.M. & Fang, L., 2014. "A comparison of regime-switching temperature modeling approaches for applications in weather derivatives," European Journal of Operational Research, Elsevier, vol. 232(3), pages 549-560.
    15. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.
    16. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    17. Ahčan, Aleš, 2012. "Statistical analysis of model risk concerning temperature residuals and its impact on pricing weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 131-138.
    18. Evarest Emmanuel & Berntsson Fredrik & Singull Martin & Yang Xiangfeng, 2018. "Weather derivatives pricing using regime switching model," Monte Carlo Methods and Applications, De Gruyter, vol. 24(1), pages 13-27, March.
    19. Alessio Giorgini & Rogemar S. Mamon & Marianito R. Rodrigo, 2021. "A Stochastic Harmonic Oscillator Temperature Model for the Valuation of Weather Derivatives," Mathematics, MDPI, vol. 9(22), pages 1-15, November.
    20. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:489-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.