IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Modelling the Temperature Time-dependent Speed of Mean Reversion in the Context of Weather Derivatives Pricing

  • A. Zapranis
  • A. Alexandridis
Registered author(s):

    In this paper, in the context of an Ornstein-Uhlenbeck temperature process, we use neural networks to examine the time dependence of the speed of the mean reversion parameter α of the process. We estimate non-parametrically with a neural network a model of the temperature process and then compute the derivative of the network output w.r.t. the network input, in order to obtain a series of daily values for α. To our knowledge, this is the first time that this has been done, and it gives us a much better insight into the temperature dynamics and temperature derivative pricing. Our results indicate strong time dependence in the daily values of α, and no seasonal patterns. This is important, since in all relevant studies performed thus far, α was assumed to be constant. Furthermore, the residuals of the neural network provide a better fit to the normal distribution when compared with the residuals of the classic linear models used in the context of temperature modelling (where α is constant). It follows that by setting the mean reversion parameter to be a function of time we improve the accuracy of the pricing of the temperature derivatives. Finally, we provide the pricing equations for temperature futures, when α is time dependent.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

    Volume (Year): 15 (2008)
    Issue (Month): 4 ()
    Pages: 355-386

    in new window

    Handle: RePEc:taf:apmtfi:v:15:y:2008:i:4:p:355-386
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:4:p:355-386. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.