IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v6y2024i1d10.1007_s42521-022-00071-9.html
   My bibliography  Save this article

A blockchain-based platform for trading weather derivatives

Author

Listed:
  • Fernando Alves Silveira

    (Banco do Brasil S.A
    University of Southern Santa Catarina)

  • Silvio Parodi de Oliveira Camilo

    (Banco do Brasil S.A
    University of Southern Santa Catarina)

Abstract

This study investigated the technical and economic viability of hedging electricity consumption using weather derivatives and smart contracts. For this purpose, we priced call options to hedge against excess of temperature for 5 Brazilian cities. We also developed a distributed autonomous application (DApp) using smart contracts, which allows individuals to negotiate these financial instruments. Our findings suggest that blockchain technology can be useful in providing a low-cost infrastructure to develop financial instruments to hedge weather-related losses. The cost of providing this platform has been estimated to be less than 300 USD. The price of options has been estimated under 50 USD. This is particularly useful for electricity consumers and small businesses in poor countries. In addition, this study provides a comprehensive guide for the development of financial solutions using smart contracts to mitigate climate change impacts.

Suggested Citation

  • Fernando Alves Silveira & Silvio Parodi de Oliveira Camilo, 2024. "A blockchain-based platform for trading weather derivatives," Digital Finance, Springer, vol. 6(1), pages 3-22, March.
  • Handle: RePEc:spr:digfin:v:6:y:2024:i:1:d:10.1007_s42521-022-00071-9
    DOI: 10.1007/s42521-022-00071-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-022-00071-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-022-00071-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabian Schär, 2021. "Decentralized Finance: On Blockchain- and Smart Contract-Based Financial Markets," Review, Federal Reserve Bank of St. Louis, vol. 103(2), pages 153-174, April.
    2. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    3. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    4. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    5. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    6. Lin William Cong & Zhiguo He, 2019. "Blockchain Disruption and Smart Contracts," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1754-1797.
    7. Fred ESPEN Benth & Jurate saltyte Benth, 2007. "The volatility of temperature and pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 553-561.
    8. David Yermack, 2017. "Corporate Governance and Blockchains," Review of Finance, European Finance Association, vol. 21(1), pages 7-31.
    9. Lixin Zeng, 2000. "Pricing Weather Derivatives," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(3), pages 72-78, February.
    10. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    11. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
    12. A. Zapranis & A. Alexandridis, 2008. "Modelling the Temperature Time-dependent Speed of Mean Reversion in the Context of Weather Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 355-386.
    13. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    14. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    15. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    16. Christian Catalini & Joshua S. Gans, 2016. "Some Simple Economics of the Blockchain," NBER Working Papers 22952, National Bureau of Economic Research, Inc.
    17. Trotter, Ian M. & Bolkesjø, Torjus Folsland & Féres, José Gustavo & Hollanda, Lavinia, 2016. "Climate change and electricity demand in Brazil: A stochastic approach," Energy, Elsevier, vol. 102(C), pages 596-604.
    18. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    2. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    3. Beyazıt, Mehmet Fuat & Koc, Erdogan, 2010. "An analysis of snow options for ski resort establishments," Tourism Management, Elsevier, vol. 31(5), pages 676-683.
    4. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    5. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    6. Evarest Emmanuel & Berntsson Fredrik & Singull Martin & Yang Xiangfeng, 2018. "Weather derivatives pricing using regime switching model," Monte Carlo Methods and Applications, De Gruyter, vol. 24(1), pages 13-27, March.
    7. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    8. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    9. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    10. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457.
    11. Martin Cimiterra & Jackie Krafft & Lionel Nesta, 2021. "Blockchain as Schumpeter Mark 1 or Mark 2? An empirical analysis of blockchain job offers in France and Germany [Innovation: mapping the winds of creative destruction]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(6), pages 1388-1402.
    12. Dulani Jayasuriya Daluwathumullagamage & Alexandra Sims, 2020. "Blockchain-Enabled Corporate Governance and Regulation," IJFS, MDPI, vol. 8(2), pages 1-41, June.
    13. Caporin, Massimiliano & Preś, Juliusz & Torro, Hipolit, 2012. "Model based Monte Carlo pricing of energy and temperature Quanto options," Energy Economics, Elsevier, vol. 34(5), pages 1700-1712.
    14. Bruno Biais & Christophe Bisière & Matthieu Bouvard & Catherine Casamatta, 2019. "The Blockchain Folk Theorem," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1662-1715.
    15. Alexandridis, Antonis K. & Kampouridis, Michael & Cramer, Sam, 2017. "A comparison of wavelet networks and genetic programming in the context of temperature derivatives," International Journal of Forecasting, Elsevier, vol. 33(1), pages 21-47.
    16. Kwangil Bae, 2019. "Valuation and applications of compound basket options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 704-720, June.
    17. Giuliano Sansone & Flavio Santalucia & Davide Viglialoro & Paolo Landoni, 2023. "Blockchain for social good and stakeholder engagement: Evidence from a case study," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2182-2193, September.
    18. Frank Schiller & Gerold Seidler & Maximilian Wimmer, 2012. "Temperature models for pricing weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 489-500, March.
    19. Bhambhwani, Siddharth M. & Huang, Allen H., 2024. "Auditing decentralized finance," The British Accounting Review, Elsevier, vol. 56(2).
    20. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811.

    More about this item

    Keywords

    Smart contracts; Climate change; Blockchain; Derivatives pricing; Temperature modelling;
    All these keywords.

    JEL classification:

    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:6:y:2024:i:1:d:10.1007_s42521-022-00071-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.