IDEAS home Printed from https://ideas.repec.org/p/hhs/sunrpe/2006_0005.html
   My bibliography  Save this paper

Does the Yield Spread Predict the Output Gap in the U.S.?

Author

Listed:

Abstract

Yes, but only at short horizons from 1 to 3 quarters over the full post-World War II sample. The predictive relation between the yield spread and the output gap is characterized by parameter instability. Differently from the predictive models of the yield spread for output growth, structural instability is not due to a loss of predictive ability after 1985. Rather, the predictive relation estimated on post-1985 data holds for a range of horizons larger than for pre-1985 data. I also show that the information on current monetary policy is statistically irrelevant for the prediction of the output gap over the post-1985 subsample.

Suggested Citation

  • Zagaglia, Paolo, 2006. "Does the Yield Spread Predict the Output Gap in the U.S.?," Research Papers in Economics 2006:5, Stockholm University, Department of Economics.
  • Handle: RePEc:hhs:sunrpe:2006_0005
    as

    Download full text from publisher

    File URL: http://www2.ne.su.se/paper/wp06_05.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    2. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, vol. 63(3), pages 435-463.
    3. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(05), pages 962-990, October.
    4. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    5. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    6. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Michael Dotsey, 1998. "The predictive content of the interest rate term spread for future economic growth," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 31-51.
    9. Joseph G. Haubrich & Ann M. Dombrosky, 1996. "Predicting real growth using the yield curve," Economic Review, Federal Reserve Bank of Cleveland, issue Q I, pages 26-35.
    10. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    12. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    13. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    14. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
    15. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    16. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    17. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    18. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    19. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arif Dar & Amaresh Samantaraya & Firdous Shah, 2014. "The predictive power of yield spread: evidence from wavelet analysis," Empirical Economics, Springer, vol. 46(3), pages 887-901, May.
    2. Dalu Zhang & Peter Moffatt, 2012. "The yield curve as a leading indicator in economic forecasting in the U.K," University of East Anglia Applied and Financial Economics Working Paper Series 035, School of Economics, University of East Anglia, Norwich, UK..
    3. Dalu Zhang & Peter Moffatt, 2013. "Time series non-linearity in the real growth / recession-term spread relationship," University of East Anglia Applied and Financial Economics Working Paper Series 047, School of Economics, University of East Anglia, Norwich, UK..

    More about this item

    Keywords

    output gap; yield spread; predictability;

    JEL classification:

    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sunrpe:2006_0005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sten Nyberg). General contact details of provider: http://edirc.repec.org/data/neisuse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.