IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04834084.html
   My bibliography  Save this paper

Feasibility of satisfying projected biopower demands in support of decarbonization interventions: A spatially-explicit cost optimization model applied to woody biomass in the eastern US

Author

Listed:
  • Ashkan Mirzaee

    (Mizzou - University of Missouri [Columbia] - University of Missouri System)

  • Ronald Mcgarvey

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Francisco Aguilar

    (SLU - Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet)

Abstract

Power generation from biomass (biopower) has experienced substantial growth in the United States. Although renewable and sustainably sourced biopower can reduce the carbon footprint of the electricity sector, there is a scarcity of analyses that simultaneously consider the financial feasibility and sustainability criteria of procured biomass. We developed a spatially-explicit optimization model to minimize the cost of meeting projected biopower demand while ensuring carbon neutrality and biomass sustainability constraints. The optimization model was applied to projected biopower demand scenarios in the eastern US, considering various public policy decarbonization interventions. Modeling woody biomass procured from local forests as the source of biopower was chosen due to its dominant role as a renewable energy source, regional availability, and lower risk of violating carbon neutrality objectives. Initially, we projected the net growth of woody biomass in trees and their carbon pools by 2035, as a function of biopower generation, utilizing data from 2009–2017. Subsequently, forecasted woody biomass and projected biopower demand through 2035 were employed to determine optimal levels of biopower generation and estimate the corresponding resource impacts within procurement forests. The results suggest the potential for substantial increases in sustainable biopower generation in the eastern US. However, the feasibility of this expansion depends on the continued economic viability of biopower generation in the future. It is worth noting that the largest increases, surpassing threefold, in biopower generation over the 2020–2030 decade could potentially compromise the carbon neutrality of locally procured woody biomass.

Suggested Citation

  • Ashkan Mirzaee & Ronald Mcgarvey & Francisco Aguilar, 2024. "Feasibility of satisfying projected biopower demands in support of decarbonization interventions: A spatially-explicit cost optimization model applied to woody biomass in the eastern US," Post-Print hal-04834084, HAL.
  • Handle: RePEc:hal:journl:hal-04834084
    DOI: 10.1016/j.eneco.2024.107672
    Note: View the original document on HAL open archive server: https://hal.science/hal-04834084v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04834084v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.eneco.2024.107672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burtraw, Dallas & Krupnick, Alan & Palmer, Karen & Paul, Anthony & Toman, Michael & Bloyd, Cary, 2003. "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 650-673, May.
    2. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Competing land uses and fossil fuel, and optimal energy conversion rates during the transition toward a green economy under a pollution stock constraint," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 92-115.
    3. Bentsen, Niclas Scott & Jack, Michael W. & Felby, Claus & Thorsen, Bo Jellesmark, 2014. "Allocation of biomass resources for minimising energy system greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 506-515.
    4. Chinese, Damiana & Meneghetti, Antonella, 2005. "Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy," Applied Energy, Elsevier, vol. 82(3), pages 228-254, November.
    5. Shawhan, Daniel L. & Picciano, Paul D., 2019. "Costs and benefits of saving unprofitable generators: A simulation case study for US coal and nuclear power plants," Energy Policy, Elsevier, vol. 124(C), pages 383-400.
    6. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    7. Soliño, Mario & Oviedo, José L. & Caparrós, Alejandro, 2018. "Are forest landowners ready for woody energy crops? Preferences for afforestation programs in Southern Spain," Energy Economics, Elsevier, vol. 73(C), pages 239-247.
    8. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    9. Nerijus Pedišius & Marius Praspaliauskas & Justinas Pedišius & Eugenija Farida Dzenajavičienė, 2021. "Analysis of Wood Chip Characteristics for Energy Production in Lithuania," Energies, MDPI, vol. 14(13), pages 1-13, June.
    10. He, Lixia & English, Burton C. & Menard, Robert J. & Lambert, Dayton M., 2016. "Regional woody biomass supply and economic impacts from harvesting in the southern U.S," Energy Economics, Elsevier, vol. 60(C), pages 151-161.
    11. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2015. "A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)," European Journal of Operational Research, Elsevier, vol. 245(1), pages 247-264.
    12. Susaeta, Andres & Lal, Pankaj & Alavalapati, Janaki & Mercer, Evan, 2011. "Random preferences towards bioenergy environmental externalities: A case study of woody biomass based electricity in the Southern United States," Energy Economics, Elsevier, vol. 33(6), pages 1111-1118.
    13. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    14. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    15. Picciano, Paul & Aguilar, Francisco X. & Burtraw, Dallas & Mirzaee, Ashkan, 2022. "Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants," Resource and Energy Economics, Elsevier, vol. 68(C).
    16. Álvarez-Miranda, Eduardo & Garcia-Gonzalo, Jordi & Ulloa-Fierro, Felipe & Weintraub, Andrés & Barreiro, Susana, 2018. "A multicriteria optimization model for sustainable forest management under climate change uncertainty: An application in Portugal," European Journal of Operational Research, Elsevier, vol. 269(1), pages 79-98.
    17. Aguilar, Francisco X. & Goerndt, Michael E. & Song, Nianfu & Shifley, Stephen, 2012. "Internal, external and location factors influencing cofiring of biomass with coal in the U.S. northern region," Energy Economics, Elsevier, vol. 34(6), pages 1790-1798.
    18. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    19. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    20. Hu, Ming-Che & Lin, Chun-Hung & Chou, Chun-An & Hsu, Shao-Yiu & Wen, Tzai-Hung, 2011. "Analysis of biomass co-firing systems in Taiwan power markets using linear complementarity models," Energy Policy, Elsevier, vol. 39(8), pages 4594-4600, August.
    21. Dahal, Ram P. & Aguilar, Francisco X. & McGarvey, Ronald G. & Becker, Dennis & Abt, Karen L., 2020. "Localized economic contributions of renewable wood-based biopower generation," Energy Economics, Elsevier, vol. 91(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinle Zheng & Linrong Yu & Qi Liu & Rui Xu & Junyan Tang & Xinyuan Yu & Kun Lv, 2025. "Digital Government Construction, Bidirectional Interaction Between Technological and Spiritual Civilization, and Achieving Dual Control of Sustainable Energy: Causal Inference Using Spatial DID and Du," Sustainability, MDPI, vol. 17(11), pages 1-43, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirzaee, Ashkan & McGarvey, Ronald G. & Aguilar, Francisco X., 2024. "Feasibility of satisfying projected biopower demands in support of decarbonization interventions: A spatially-explicit cost optimization model applied to woody biomass in the eastern US," Energy Economics, Elsevier, vol. 136(C).
    2. Picciano, Paul & Aguilar, Francisco X. & Burtraw, Dallas & Mirzaee, Ashkan, 2022. "Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants," Resource and Energy Economics, Elsevier, vol. 68(C).
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Ashkan Mirzaee & Ronald G. McGarvey & Francisco X. Aguilar & Erin M. Schliep, 2023. "Impact of biopower generation on eastern US forests," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4087-4105, May.
    5. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    6. Cerdá, Emilio & López-Otero, Xiral & Quiroga, Sonia & Soliño, Mario, 2024. "Willingness to pay for renewables: Insights from a meta-analysis of choice experiments," Energy Economics, Elsevier, vol. 130(C).
    7. Marco Quatrosi, 2024. "Emission trading in a high dimensional context: to what extent are carbon markets integrated with the broader system?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 41(3), pages 793-814, October.
    8. Burton C. English & Robert Jamey Menard & Daniel G. de la Torre Ugarte & Lixia H. Lambert & Chad M. Hellwinckel & Matthew H. Langholtz, 2025. "Agriculture’s Potential Regional Economic Contributions to the United States Economy When Supplying Feedstock to the Bio-Economy," Energies, MDPI, vol. 18(8), pages 1-31, April.
    9. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    10. Mardones, Cristian, 2024. "Measuring the efficiency gains of merging carbon markets – A microsimulation for thermoelectric and industrial sources," Energy, Elsevier, vol. 290(C).
    11. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    12. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    13. Serhan Cevik, 2024. "Climate change and energy security: the dilemma or opportunity of the century?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 26(3), pages 653-672, July.
    14. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    15. Jonathan Colmer & Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2020. "Does pricing carbon mitigate climate change? Firm-level evidence from the European Union emissions trading scheme," CEP Discussion Papers dp1728, Centre for Economic Performance, LSE.
    16. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    17. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    18. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    19. Pizer, William A. & Burtraw, Dallas & Harrington, Winston & Newell, Richard G. & Sanchirico, James N., 2005. "Modeling Economywide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Models," Discussion Papers 10502, Resources for the Future.
    20. Frazer Musonda & Markus Millinger & Daniela Thrän, 2020. "Greenhouse Gas Abatement Potentials and Economics of Selected Biochemicals in Germany," Sustainability, MDPI, vol. 12(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04834084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.