IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3931-d585951.html
   My bibliography  Save this article

Analysis of Wood Chip Characteristics for Energy Production in Lithuania

Author

Listed:
  • Nerijus Pedišius

    (Lithuanian Energy Institute, 44403 Kaunas, Lithuania)

  • Marius Praspaliauskas

    (Lithuanian Energy Institute, 44403 Kaunas, Lithuania)

  • Justinas Pedišius

    (Lithuanian Energy Institute, 44403 Kaunas, Lithuania)

  • Eugenija Farida Dzenajavičienė

    (Lithuanian Energy Institute, 44403 Kaunas, Lithuania)

Abstract

Wood chips and logging residues currently comprise the largest share of biomass fuels used for heat generation in district heating plants and are provided by a variety of suppliers. Ash and moisture contents, as well as the calorific value, may vary considerably depending on the composition of the fuel, seasonality, location, and other factors. This paper provides the summarized results of the main characteristics of wood chip moisture and ash content and calorific value, experimentally tested for a significant range of samples. Chip samples were collected from two district heating companies and tested for a significant range of samples. Chip samples were collected from two district heating companies and tested for a 3-year period. The data on fuel chip prices were taken from the electronic wood chip trading platform. The tests were performed using standard express methods, where two sub-samples were taken and analyzed from every chip sample. It was determined that the moisture content of the wood chips varied from 35% to 45%, the calorific value from 18.4 to 19.6 MJ/kg, and the ash content from 0.5% to 4.5%. The calculated relative expanded uncertainty of the moisture content measurement was ±2.1%, of calorific value—±1.5%, and of ash—±1.0%. The repeatability of the results was estimated as the pooled standard deviation.

Suggested Citation

  • Nerijus Pedišius & Marius Praspaliauskas & Justinas Pedišius & Eugenija Farida Dzenajavičienė, 2021. "Analysis of Wood Chip Characteristics for Energy Production in Lithuania," Energies, MDPI, vol. 14(13), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3931-:d:585951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D'Adamo, Idiano & Falcone, Pasquale Marcello & Morone, Piergiuseppe, 2020. "A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe," Ecological Economics, Elsevier, vol. 176(C).
    2. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Ewelina Olba-Zięty & Jakub Stolarski, 2023. "Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time," Energies, MDPI, vol. 16(24), pages 1-20, December.
    2. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    3. Yasirah Yusoff & Ee Sann Tan & Firas Basim Ismail, 2023. "A Comparison of Feedstock from Agricultural Biomass and Face Masks for the Production of Biochar through Co-Pyrolysis," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    4. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.
    5. Moaaz Shehab & Camelia Stratulat & Kemal Ozcan & Aylin Boztepe & Alper Isleyen & Edwin Zondervan & Kai Moshammer, 2022. "A Comprehensive Analysis of the Risks Associated with the Determination of Biofuels’ Calorific Value by Bomb Calorimetry," Energies, MDPI, vol. 15(8), pages 1-20, April.
    6. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    7. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.
    8. Jakub Stolarski & Sławomir Wierzbicki & Szymon Nitkiewicz & Mariusz Jerzy Stolarski, 2023. "Wood Chip Production Efficiency Depending on Chipper Type," Energies, MDPI, vol. 16(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Uchechukwu Stella Ezealigo & Blessing Nonye Ezealigo & Francis Kemausuor & Luke Ekem Kweku Achenie & Azikiwe Peter Onwualu, 2021. "Biomass Valorization to Bioenergy: Assessment of Biomass Residues’ Availability and Bioenergy Potential in Nigeria," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    3. Seok-Jun Kim & Kwang-Cheol Oh & Sun-Yong Park & Young-Min Ju & La-Hoon Cho & Chung-Geon Lee & Min-Jun Kim & In-Seon Jeong & Dae-Hyun Kim, 2021. "Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction," Energies, MDPI, vol. 14(19), pages 1-14, September.
    4. Idiano D’Adamo & Piergiuseppe Morone & Donald Huisingh, 2021. "Bioenergy: A Sustainable Shift," Energies, MDPI, vol. 14(18), pages 1-5, September.
    5. Mairon G. Bastos Lima, 2021. "Corporate Power in the Bioeconomy Transition: The Policies and Politics of Conservative Ecological Modernization in Brazil," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    6. Jaroslav Demko & Ján Machava, 2022. "Tree Resin, a Macroergic Source of Energy, a Possible Tool to Lower the Rise in Atmospheric CO 2 Levels," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    7. Yulin Chen & Songtao Liu & Xiaoyu Guo & Chaojie Jia & Xiaodong Huang & Yaodong Wang & Haozhong Huang, 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE 3-4 Blends," Energies, MDPI, vol. 14(17), pages 1-24, September.
    8. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    9. Alfredo de Toro & Carina Gunnarsson & Nils Jonsson & Martin Sundberg, 2021. "Effects of Variable Weather Conditions on Baled Proportion of Varied Amounts of Harvestable Cereal Straw, Based on Simulations," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    10. Juan B. Restrepo & Carlos D. Paternina-Arboleda & Antonio J. Bula, 2021. "1,2—Propanediol Production from Glycerol Derived from Biodiesel’s Production: Technical and Economic Study," Energies, MDPI, vol. 14(16), pages 1-15, August.
    11. Aleksandra Petrovič & Sabina Vohl & Tjaša Cenčič Predikaka & Robert Bedoić & Marjana Simonič & Irena Ban & Lidija Čuček, 2021. "Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar," Sustainability, MDPI, vol. 13(17), pages 1-34, August.
    12. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Laura Virta & Riikka Räisänen, 2021. "Three Futures Scenarios of Policy Instruments for Sustainable Textile Production and Consumption as Portrayed in the Finnish News Media," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    14. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    15. Fabiana Gatto & Sara Daniotti & Ilaria Re, 2021. "Driving Green Investments by Measuring Innovation Impacts. Multi-Criteria Decision Analysis for Regional Bioeconomy Growth," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    16. Karin Meisterl & Sergio Sastre & Ignasi Puig-Ventosa & Rosaria Chifari & Laura Martínez Sánchez & Laurène Chochois & Gabriella Fiorentino & Amalia Zucaro, 2024. "Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    17. Alexandra Gottinger & Luana Ladu & Rainer Quitzow, 2020. "Studying the Transition towards a Circular Bioeconomy—A Systematic Literature Review on Transition Studies and Existing Barriers," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    18. Diego Teixeira Michalovicz & Patricia Bilotta, 2023. "Impact of a methane emission tax on circular economy scenarios in small wastewater treatment plants," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6575-6589, July.
    19. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    20. Marzena Smol & Paulina Marcinek & Joanna Duda, 2024. "Circular Business Models (CBMs) in Environmental Management—Analysis of Definitions, Typologies and Methods of Creation in Organizations," Sustainability, MDPI, vol. 16(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3931-:d:585951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.