A Comparison of Feedstock from Agricultural Biomass and Face Masks for the Production of Biochar through Co-Pyrolysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nerijus Pedišius & Marius Praspaliauskas & Justinas Pedišius & Eugenija Farida Dzenajavičienė, 2021. "Analysis of Wood Chip Characteristics for Energy Production in Lithuania," Energies, MDPI, vol. 14(13), pages 1-13, June.
- Park, Jeong-Woo & Heo, Juheon & Ly, Hoang Vu & Kim, Jinsoo & Lim, Hankwon & Kim, Seung-Soo, 2019. "Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor," Energy, Elsevier, vol. 179(C), pages 517-527.
- Anežka Sedmihradská & Michael Pohořelý & Petr Jevič & Siarhei Skoblia & Zdeněk Beňo & Josef Farták & Bohumír Čech & Miloslav Hartman, 2020. "Pyrolysis of wheat and barley straw," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 66(1), pages 8-17.
- Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
- Asadi, Asgar & Zhang, Yaning & Mohammadi, Hassan & Khorand, Hadi & Rui, Zhenhua & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh, 2019. "Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study," Renewable Energy, Elsevier, vol. 138(C), pages 79-89.
- Park, Chanyeong & Choi, Heeyoung & Andrew Lin, Kun-Yi & Kwon, Eilhann E. & Lee, Jechan, 2021. "COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste," Energy, Elsevier, vol. 230(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
- Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
- Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
- Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
- Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
- Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
- Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
- Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
- Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
- Luo, Miaoling & Shao, Shanshan & Cao, Yu & Li, Xiaohua & Wu, Shiliang, 2025. "A study on the characteristics and kinetic of co-catalytic pyrolysis with rape straw and ABS waste plastics," Renewable Energy, Elsevier, vol. 242(C).
- Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
- Bohuslava Mihalčová & Antonín Korauš & Olha Prokopenko & Jozefína Hvastová & Magdaléna Freňáková & Peter Gallo & Beáta Balogová, 2021. "Effective Management Tools for Solving the Problem of Poverty in Relation to Food Waste in Context of Integrated Management of Energy," Energies, MDPI, vol. 14(14), pages 1-18, July.
- Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
- Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
- Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
- Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).
- Tahereh Soleymani Angili & Katarzyna Grzesik & Wojciech Jerzak, 2023. "Comparative Life Cycle Assessment of Catalytic Intermediate Pyrolysis of Rapeseed Meal," Energies, MDPI, vol. 16(4), pages 1-16, February.
- Polin, Joseph P. & Peterson, Chad A. & Whitmer, Lysle E. & Smith, Ryan G. & Brown, Robert C., 2019. "Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor," Applied Energy, Elsevier, vol. 249(C), pages 276-285.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16000-:d:1281357. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16000-d1281357.html