IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Iterating influence between players in a social network

  • Michel Grabisch

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne, EEP-PSE - Ecole d'Économie de Paris - Paris School of Economics - Ecole d'Économie de Paris)

  • Agnieszka Rusinowska

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne, EEP-PSE - Ecole d'Économie de Paris - Paris School of Economics - Ecole d'Économie de Paris)

We generalize a yes-no model of influence in a social network with a single step of mutual influence to a framework with iterated influence. Each agent makes an acceptance- rejection decision and has an inclination to say either ‘yes' or ‘no'. Due to influence by others, an agent's decision may be different from his original inclination. Such a transformation from the inclinations to the decisions is represented by an influence function. We analyze the decision process in which the mutual influence does not stop after one step but iterates. Any classical influence function can be coded by a stochastic matrix, and a generalization leads to stochastic influence functions. We apply Markov chains theory to the analysis of stochastic binary influence functions. We deliver a general analysis of the convergence of an influence function and then study the convergence of particular influence functions. This model is compared with the Asavathiratham model of influence. We also investigate models based on aggregation functions. In this context, we give a complete description of terminal classes, and show that the only terminal states are the consensus states if all players are weakly essential.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://halshs.archives-ouvertes.fr/docs/00/54/38/40/PDF/10089.pdf
Download Restriction: no

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00543840.

as
in new window

Length:
Date of creation: Nov 2010
Date of revision:
Handle: RePEc:hal:cesptp:halshs-00543840
Note: View the original document on HAL open archive server: http://halshs.archives-ouvertes.fr/halshs-00543840
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Michel Grabisch & Agnieszka Rusinowska, 2010. "Different Approaches to Influence Based on Social Networks and Simple Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00514850, HAL.
  2. Michel Grabisch & Agnieszka Rusinowska, 2008. "Measuring influence in command games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00269084, HAL.
  3. Michel Grabisch & Agnieszka Rusinowska, 2008. "A model of influence in a social network," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00344457, HAL.
  4. Lorenz, Jan, 2005. "A stabilization theorem for dynamics of continuous opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 217-223.
  5. Agnieszka Rusinowska & Michel Grabisch, 2010. "A model of influence with an ordered set of possible actions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00519413, HAL.
  6. Bogaçhan Çelen & Shachar Kariv, 2004. "Distinguishing Informational Cascades from Herd Behavior in the Laboratory," American Economic Review, American Economic Association, vol. 94(3), pages 484-498, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00543840. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.