IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-01387480.html
   My bibliography  Save this paper

Determining models of influence

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - ENPC - École des Ponts ParisTech - ENS Paris - École normale supérieure - Paris - PSL - Université Paris sciences et lettres - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique - EHESS - École des hautes études en sciences sociales - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Agnieszka Rusinowska

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - ENPC - École des Ponts ParisTech - ENS Paris - École normale supérieure - Paris - PSL - Université Paris sciences et lettres - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique - EHESS - École des hautes études en sciences sociales - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We consider a model of opinion formation based on aggregation functions. Each player modifies his opinion by arbitrarily aggregating the current opinion of all players. A player is influential on another player if the opinion of the first one matters to the latter. A generalization of an influential player to a coalition whose opinion matters to a player is called an influential coalition. Influential players (coalitions) can be graphically represented by the graph (hypergraph) of influence, and convergence analysis is based on properties of the hypergraphs of influence. In the paper, we focus on the practical issues of applicability of the model w.r.t. a standard framework for opinion formation driven by Markov chain theory. For a qualitative analysis of convergence, knowing the aggregation functions of the players is not required, one only needs to know the set of influential coalitions for each player. We propose simple algorithms that permit us to fully determine the influential coalitions. We distinguish three cases: the symmetric decomposable model, the anonymous model, and the general model. JEL Classification: C7, D7, D85

Suggested Citation

  • Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining models of influence," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01387480, HAL.
  • Handle: RePEc:hal:cesptp:hal-01387480
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-01387480
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-01387480/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-1071, September.
    2. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    3. Förster, Manuel & Grabisch, Michel & Rusinowska, Agnieszka, 2013. "Anonymous social influence," Games and Economic Behavior, Elsevier, vol. 82(C), pages 621-635.
    4. Glenn Ellison & Drew Fudenberg, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 93-125.
    5. Grabisch, Michel & Rusinowska, Agnieszka, 2013. "A model of influence based on aggregation functions," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 316-330.
    6. Ellison, Glenn & Fudenberg, Drew, 1993. "Rules of Thumb for Social Learning," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 612-643, August.
    7. Banerjee, Abhijit & Fudenberg, Drew, 2004. "Word-of-mouth learning," Games and Economic Behavior, Elsevier, vol. 46(1), pages 1-22, January.
    8. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, Oxford University Press, vol. 118(3), pages 909-968.
    9. Manuel Förster & Michel Grabisch & Agnieszka Rusinowska, 2012. "Ordered Weighted Averaging in Social Networks," Documents de travail du Centre d'Economie de la Sorbonne 12056, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 107(3), pages 797-817.
    11. Benjamin Golub & Matthew O. Jackson, 2010. "Naïve Learning in Social Networks and the Wisdom of Crowds," American Economic Journal: Microeconomics, American Economic Association, vol. 2(1), pages 112-149, February.
    12. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    13. Bogaçhan Çelen & Shachar Kariv, 2004. "Distinguishing Informational Cascades from Herd Behavior in the Laboratory," American Economic Review, American Economic Association, vol. 94(3), pages 484-498, June.
    14. Lorenz, Jan, 2005. "A stabilization theorem for dynamics of continuous opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 217-223.
    15. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Documents de travail du Centre d'Economie de la Sorbonne 19024, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02372486, HAL.
    3. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Post-Print halshs-02372486, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining influential models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318081, HAL.
    2. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, Open Access Journal, vol. 11(4), pages 1-29, December.
    3. Grabisch, Michel & Rusinowska, Agnieszka, 2013. "A model of influence based on aggregation functions," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 316-330.
    4. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2018. "Strategic Influence in Social Networks," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 29-50, February.
    5. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    6. Förster, Manuel & Grabisch, Michel & Rusinowska, Agnieszka, 2013. "Anonymous social influence," Games and Economic Behavior, Elsevier, vol. 82(C), pages 621-635.
    7. Grabisch, Michel & Poindron, Alexis & Rusinowska, Agnieszka, 2019. "A model of anonymous influence with anti-conformist agents," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    8. Michel Grabisch & Agnieszka Rusinowska, 2010. "Iterating influence between players in a social network," Documents de travail du Centre d'Economie de la Sorbonne 10089, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Matthew O. Jackson & Benjamin Golub, 2007. "Naïve Learning in Social Networks: Convergence, Influence and Wisdom of Crowds," Working Papers 2007.64, Fondazione Eni Enrico Mattei.
    10. Akylai Taalaibekova, 2018. "Opinion formation in social networks," Operations Research and Decisions, Wroclaw University of Technology, Institute of Organization and Management, vol. 2, pages 85-108.
    11. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    12. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    13. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," Review of Economic Studies, Oxford University Press, vol. 78(4), pages 1201-1236.
    14. Foerster, Manuel, 2019. "Dynamics of strategic information transmission in social networks," Theoretical Economics, Econometric Society, vol. 14(1), January.
    15. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    16. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    17. Hirshleifer, David & Teoh, Siew Hong, 2008. "Thought and Behavior Contagion in Capital Markets," MPRA Paper 9164, University Library of Munich, Germany.
    18. Grabisch, Michel & Poindron, Alexis & Rusinowska, Agnieszka, 2019. "A model of anonymous influence with anti-conformist agents," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    19. Lobel, Ilan & Sadler, Evan, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    20. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.

    More about this item

    Keywords

    algorithm; social network; opinion formation; aggregation function; influential coalition;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D7 - Microeconomics - - Analysis of Collective Decision-Making
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-01387480. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.