IDEAS home Printed from https://ideas.repec.org/p/grz/wpaper/2018-19.html
   My bibliography  Save this paper

Can preferential trade agreements enhance renewable electricity generation in emerging economies? A model-based policy analysis for Brazil and the European Union

Author

Listed:
  • Yadira Mori-Clement

    (University of Graz, Austria)

  • Stefan Nabernegg

    (University of Graz, Austria)

  • Birgit Bednar-Friedl

    (University of Graz, Austria)

Abstract

Preferential trade agreements with climate-related provisions have been suggested as alternative to a New Market Mechanism due to its potential not only to achieve Nationally Determined Contributions (NDCs) in emerging economies but also to lead to more ambitious targets in the first UNFCCC global stocktake in 2023. The objective of this research is therefore to analyze the effectiveness and quantify the economic impacts of such a trade agreement between Brazil and the European Union that aims to support renewable electricity generation. Using a multi-regional computable general equilibrium model, we find that the environmental effectiveness of a preferential trade agreement targeting renewable electricity generation strongly depends on its design. In particular, preferential trade agreements require additional elements to effectively contribute to mitigation as the sole removal of import tariffs on renewable energy technology is quite ineffective in scaling up the share of wind, solar, and biomass in Brazil. In contrast, a preferential trade agreement triggering FDI flows towards renewable electricity generation is effective in increasing the share of renewables in the generation mix and in reducing CO2 emissions, while positively affecting the Brazilian economic performance. Finally, we compare the two previous approaches to a domestic energy policy: a combination of higher fossil fuel taxes and subsidies to renewable electricity generation. We find that although this domestic energy policy is more effective in mitigation terms than the FDI policy, economic performance is negatively affected in several sectors. When such economic costs are socially not acceptable, as it is likely in many emerging economies, properly designed preferential trade agreements could therefore be a suitable instrument for supporting the achievement of NDCs, and potentially increase their stringency for the next stock taking period.

Suggested Citation

  • Yadira Mori-Clement & Stefan Nabernegg & Birgit Bednar-Friedl, 2018. "Can preferential trade agreements enhance renewable electricity generation in emerging economies? A model-based policy analysis for Brazil and the European Union," Graz Economics Papers 2018-19, University of Graz, Department of Economics.
  • Handle: RePEc:grz:wpaper:2018-19
    as

    Download full text from publisher

    File URL: https://unipub.uni-graz.at/obvugrveroeff/download/pdf/9606817?originalFilename=true
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Chichilnisky, Graciela, 1994. "North-South Trade and the Global Environment," American Economic Review, American Economic Association, vol. 84(4), pages 851-874, September.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Gernot Klepper & Sonja Peterson, 2006. "Emissions Trading, CDM, JI, and More: The Climate Strategy of the EU," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-26.
    5. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Is renewable energy effective in promoting growth?," Energy Policy, Elsevier, vol. 46(C), pages 434-442.
    6. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, vol. 10(3), pages 1-26, March.
    7. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    8. Dong, Yan & Whalley, John, 2011. "Carbon motivated regional trade arrangements: Analytics and simulations," Economic Modelling, Elsevier, vol. 28(6), pages 2783-2792.
    9. Hof, Andries F. & den Elzen, Michel G.J. & Admiraal, Annemiek & Roelfsema, Mark & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2017. "Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2°C and 1.5°C," Environmental Science & Policy, Elsevier, vol. 71(C), pages 30-40.
    10. Azusa OKAGAWA & Kanemi BAN, 2008. "Estimation of substitution elasticities for CGE models," Discussion Papers in Economics and Business 08-16, Osaka University, Graduate School of Economics.
    11. de Jong, P. & Sánchez, A.S. & Esquerre, K. & Kalid, R.A. & Torres, E.A., 2013. "Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 526-535.
    12. Zhu, Huiming & Duan, Lijun & Guo, Yawei & Yu, Keming, 2016. "The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression," Economic Modelling, Elsevier, vol. 58(C), pages 237-248.
    13. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    14. Jan Corfee-Morlot & Bruno Guay & Kate Larsen, 2009. "Financing Climate Change Mitigation: Towards a Framework for Measurement, Reporting and Verification," OECD/IEA Climate Change Expert Group Papers 2009/6, OECD Publishing.
    15. Jean-Marie Grether & Nicole A. Mathys & Jaime de Melo, 2007. "Trade, Technique and Composition Effects: What is Behind the Fall in World-Wide SO2 Emissions 1990-2000?," Working Papers 2007.93, Fondazione Eni Enrico Mattei.
    16. Caroline De Oliveira Costa Souza Rosa & Kelly Alonso Costa & Eliane Da Silva Christo & Pâmela Braga Bertahone, 2017. "Complementarity of Hydro, Photovoltaic, and Wind Power in Rio de Janeiro State," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
    17. Yan Dong & John Whalley, 2010. "Carbon, Trade Policy and Carbon Free Trade Areas," The World Economy, Wiley Blackwell, vol. 33(9), pages 1073-1094, September.
    18. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    19. Christoph Böhringer & Thomas Rutherford & Marco Springmann, 2015. "Clean-Development Investments: An Incentive-Compatible CGE Modelling Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(4), pages 633-651, April.
    20. Managi, Shunsuke & Hibiki, Akira & Tsurumi, Tetsuya, 2009. "Does trade openness improve environmental quality?," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 346-363, November.
    21. Balineau, Gaëlle & De Melo, Jaime, 2013. "Removing barriers to trade on environmental goods: an appraisal," World Trade Review, Cambridge University Press, vol. 12(4), pages 693-718, October.
    22. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    23. Schinko, Thomas & Bednar-Friedl, Birgit & Steininger, Karl W. & Grossmann, Wolf D., 2014. "Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment," Energy Policy, Elsevier, vol. 67(C), pages 818-831.
    24. Christoph Böhringer & Jared C. Carbone & Thomas F. Rutherford, 2016. "The Strategic Value of Carbon Tariffs," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 28-51, February.
    25. de Jong, Pieter & Kiperstok, Asher & Torres, Ednildo A., 2015. "Economic and environmental analysis of electricity generation technologies in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 725-739.
    26. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    27. Verbruggen, Aviel & Lauber, Volkmar, 2012. "Assessing the performance of renewable electricity support instruments," Energy Policy, Elsevier, vol. 45(C), pages 635-644.
    28. Barbara Buchner & Jessica Brown & Jan Corfee-Morlot, 2011. "Monitoring and Tracking Long-Term Finance to Support Climate Action," OECD/IEA Climate Change Expert Group Papers 2011/3, OECD Publishing.
    29. Stephen S. Golub & Céline Kauffmann & Philip Yeres, 2011. "Defining and Measuring Green FDI: An Exploratory Review of Existing Work and Evidence," OECD Working Papers on International Investment 2011/2, OECD Publishing.
    30. Timothy P. Hubbard, 2014. "Trade and transboundary pollution: quantifying the effects of trade liberalization on CO 2 emissions," Applied Economics, Taylor & Francis Journals, vol. 46(5), pages 483-502, February.
    31. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    32. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 137-147.
    33. Jehan Sauvage & Christina Timiliotis, 2017. "Trade in services related to the environment," OECD Trade and Environment Working Papers 2017/2, OECD Publishing.
    34. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    35. Gao, Shuai & Smits, Mattijs & Mol, Arthur P.J. & Wang, Can, 2016. "New market mechanism and its implication for carbon reduction in China," Energy Policy, Elsevier, vol. 98(C), pages 221-231.
    36. Shunsuke Managi, 2004. "Trade Liberalization and the Environment: Carbon Dioxide for 1960-1999," Economics Bulletin, AccessEcon, vol. 17(1), pages 1-5.
    37. Rafael Leal-Arcas & Valentina Caruso & Raphaela Leupuscek, 2015. "Renewables, Preferential Trade Agreements and EU Energy Security," Laws, MDPI, vol. 4(3), pages 1-43, August.
    38. Joysri Acharyya, 2009. "Fdi, Growth And The Environment: Evidence From India On Co2 Emission During The Last Two Decades," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 34(1), pages 43-58, June.
    39. Pereira, Marcio Giannini & Camacho, Cristiane Farias & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2012. "The renewable energy market in Brazil: Current status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3786-3802.
    40. Mark Sanctuary, 2018. "Border carbon adjustments and unilateral incentives to regulate the climate," Review of International Economics, Wiley Blackwell, vol. 26(4), pages 826-851, September.
    41. Richard Baron & Barbara Buchner & Jane Ellis, 2009. "Sectoral Approaches and the Carbon Market," OECD/IEA Climate Change Expert Group Papers 2009/3, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muntasir Murshed & Mohamed Elheddad & Rizwan Ahmed & Mohga Bassim & Ei Thuzar Than, 2022. "Foreign Direct Investments, Renewable Electricity Output, and Ecological Footprints: Do Financial Globalization Facilitate Renewable Energy Transition and Environmental Welfare in Bangladesh?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 33-78, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.
    2. Ling, Chong Hui & Ahmed, Khalid & Muhamad, Rusnah binti & Shahbaz, Muhammad, 2015. "Decomposing the trade-environment nexus for Malaysia: What do the technique, scale, composition and comparative advantage effect indicate?," MPRA Paper 67165, University Library of Munich, Germany, revised 09 Oct 2015.
    3. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    4. Shahbaz, Muhammad, 2019. "Globalization-Emissions Nexus: Testing the EKC hypothesis in Next-11 Countries," MPRA Paper 93959, University Library of Munich, Germany, revised 13 May 2019.
    5. Aller, Carlos & Ductor, Lorenzo & Herrerias, M.J., 2015. "The world trade network and the environment," Energy Economics, Elsevier, vol. 52(PA), pages 55-68.
    6. Muhammad Shahbaz, 2022. "Globalization–Emissions Nexus: Testing the EKC Hypothesis in Next-11 Countries," Global Business Review, International Management Institute, vol. 23(1), pages 75-100, February.
    7. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    8. Yiping Sun & Xiangyi Li & Tengyuan Zhang & Jiawei Fu, 2022. "Does Trade Policy Uncertainty Exacerbate Environmental Pollution?—Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    9. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    10. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2011. "Cooperative and non-cooperative solutions to carbon leakage," Conference papers 332096, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter?," Energy Policy, Elsevier, vol. 68(C), pages 490-497.
    12. Nabernegg, Stefan & Bednar-Friedl, Birgit & Muñoz, Pablo & Titz, Michaela & Vogel, Johanna, 2019. "National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains," Ecological Economics, Elsevier, vol. 158(C), pages 146-157.
    13. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    14. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 125-147.
    15. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    16. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2012. "Trade and Environment: Further Empirical Evidence from Heterogeneous Panels Using Aggregate Data," GREDEG Working Papers 2012-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    17. Mansor H. Ibrahim, 2018. "Trade–finance complementarity and carbon emission intensity: panel evidence from middle-income countries," Environment Systems and Decisions, Springer, vol. 38(4), pages 489-500, December.
    18. Michael Schymura & Andreas Löschel, 2012. "Trade and the Environment: An Application of the WIOD Database," EcoMod2012 3948, EcoMod.
    19. Suárez-Varela, Marta & Rodríguez-Crespo, Ernesto, 2022. "Is dirty trade concentrating in more polluting countries? Evidence from Africa," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 728-744.
    20. Inma Martínez-Zarzoso & Shampa Roy-Mukherjee & Finn-Ole Semrau & Anca M. Voicu, 2020. "Pollution Reduction by Rationalization in Indian Firms," Working Papers 2020.01, International Network for Economic Research - INFER.

    More about this item

    Keywords

    Preferential Trade Agreements with climate-related provisions; environmental goods; renewable energy; FDI; emerging economies; Brazil; European Union;
    All these keywords.

    JEL classification:

    • Q27 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Issues in International Trade
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:grz:wpaper:2018-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefan Borsky (email available below). General contact details of provider: https://edirc.repec.org/data/vgrazat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.