IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/19-23.html

A Generalized Factor Model with Local Factors

Author

Listed:
  • Simon Freyaldenhoven

Abstract

I extend the theory on factor models by incorporating local factors into the model. Local factors only affect an unknown subset of the observed variables. This implies a continuum of eigenvalues of the covariance matrix, as is commonly observed in applications. I derive which factors are pervasive enough to be economically important and which factors are pervasive enough to be estimable using the common principal component estimator. I then introduce a new class of estimators to determine the number of those relevant factors. Unlike existing estimators, my estimators use not only the eigenvalues of the covariance matrix, but also its eigenvectors. I find strong evidence of local factors in a large panel of US macroeconomic indicators.

Suggested Citation

  • Simon Freyaldenhoven, 2019. "A Generalized Factor Model with Local Factors," Working Papers 19-23, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:19-23
    DOI: 10.21799/frbp.wp.2019.23
    Note: Superseded by Working Paper 21-15
    as

    Download full text from publisher

    File URL: https://www.philadelphiafed.org/-/media/frbp/assets/working-papers/2019/wp19-23.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.21799/frbp.wp.2019.23?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, The University of Osaka.
    2. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    3. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:19-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beth Paul (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.