IDEAS home Printed from https://ideas.repec.org/p/euf/dispap/070.html
   My bibliography  Save this paper

Evaluating Medium Term Forecasting Methods and their Implications for EU Output Gap Calculations

Author

Listed:
  • Kieran Mc Morrow
  • Werner Roeger
  • Valerie Vandermeulen

Abstract

This paper sheds light on two specific, but interlinked, questions – firstly, how do the EU's, medium term actual GDP growth rate forecasts compare, in terms of accuracy and biasedness, with those of the EU's Member States, in their annual Stability and Convergence Programme (SCP) updates; and secondly, should medium term forecasts be allowed to influence the short run output gap and structural balance calculations used in the EU’s fiscal surveillance procedures. Regarding the first question, the paper concludes that the EU's medium term forecasts are equally as good, and arguably better, than those of the SCP's both with respect to accuracy and biasedness. Regarding the second question, due to the relatively rapid loss in forecast accuracy as the time horizon lengthens; the paper suggests that using more forecast information should be avoided in the output gap and structural balance calculations. Extending the forecast horizon to be used in the output gap calculations could exacerbate an existing optimistic bias with respect to the supply side health of the EU’s economy, thereby enlarging the risk of procyclicality problems, especially in the upswing phase of cycles, where most of the large fiscal policy errors tend to occur.

Suggested Citation

  • Kieran Mc Morrow & Werner Roeger & Valerie Vandermeulen, 2017. "Evaluating Medium Term Forecasting Methods and their Implications for EU Output Gap Calculations," European Economy - Discussion Papers 070, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
  • Handle: RePEc:euf:dispap:070
    as

    Download full text from publisher

    File URL: https://economy-finance.ec.europa.eu/publications/evaluating-medium-term-forecasting-methods-and-their-implications-eu-output-gap-calculations_en
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    2. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    3. Hofer Helmut & Weyerstraß Klaus & Schmidt Torsten, 2011. "Practice and Prospects of Medium-term Economic Forecasting," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 153-171, February.
    4. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    5. Tom Stark, 2010. "Realistic evaluation of real-time forecasts in the Survey of Professional Forecasters," Research Rap Special Report, Federal Reserve Bank of Philadelphia, issue May.
    6. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    7. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    8. Karel Havik & Kieran Mc Morrow & Fabrice Orlandi & Christophe Planas & Rafal Raciborski & Werner Roeger & Alessandro Rossi & Anna Thum-Thysen & Valerie Vandermeulen, 2014. "The Production Function Methodology for Calculating Potential Growth Rates & Output Gaps," European Economy - Economic Papers 2008 - 2015 535, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    9. Fildes, Robert & Stekler, Herman, 2002. "Reply to the comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 503-505, December.
    10. Lant Pritchett & Lawrence H. Summers, 2013. "Asia-phoria meet regression to the mean," Proceedings, Federal Reserve Bank of San Francisco, issue Nov, pages 1-35.
    11. Christian Gayer, 2006. "Forecast Evaluation of European Commission Survey Indicators," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(2), pages 157-183.
    12. Rochelle M. Edge & Refet S. Gürkaynak, 2011. "How useful are estimated DSGE model forecasts?," Finance and Economics Discussion Series 2011-11, Board of Governors of the Federal Reserve System (U.S.).
    13. Kempkes, Gerhard, 2012. "Cyclical adjustment in fiscal rules: Some evidence on real-time bias for EU-15 countries," Discussion Papers 15/2012, Deutsche Bundesbank.
    14. Nigel Pain & Christine Lewis & Thai-Thanh Dang & Yosuke Jin & Pete Richardson, 2014. "OECD Forecasts During and After the Financial Crisis: A Post Mortem," OECD Economics Department Working Papers 1107, OECD Publishing.
    15. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatás, Antonio & Singh, Sanjay R., 2024. "Supply or demand? Policy makers’ confusion in the presence of hysteresis," European Economic Review, Elsevier, vol. 161(C).
    2. A. Fatas & Mr. Atish R. Ghosh & Ugo Panizza & Mr. Andrea F Presbitero, 2019. "The Motives to Borrow," IMF Working Papers 2019/101, International Monetary Fund.
    3. Antonio Fatás, 2019. "Fiscal Policy, Potential Output, and the Shifting Goalposts," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 67(3), pages 684-702, September.
    4. Cronin, David & McInerney, Niall, 2023. "Official fiscal forecasts in EU member states under the European Semester and Fiscal Compact – An empirical assessment," European Journal of Political Economy, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    2. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    3. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    4. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    5. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    7. Oller, Lars-Erik & Teterukovsky, Alex, 2007. "Quantifying the quality of macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 23(2), pages 205-217.
    8. Simón Sosvilla-Rivero & María del Carmen Ramos-Herrera, 2018. "Inflation, real economic growth and unemployment expectations: an empirical analysis based on the ECB survey of professional forecasters," Applied Economics, Taylor & Francis Journals, vol. 50(42), pages 4540-4555, September.
    9. Moramarco, Graziano, 2024. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
    10. Ullrich Heilemann & Karsten Müller, 2018. "Wenig Unterschiede – Zur Treffsicherheit Internationaler Prognosen und Prognostiker [Few differences—on the accuracy of international forecasts and forecaster]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 195-233, December.
    11. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.
    12. Sergey V. Smirnov, 2014. "Predicting US Recessions: Does a Wishful Bias Exist?," HSE Working papers WP BRP 77/EC/2014, National Research University Higher School of Economics.
    13. Döpke, Jörg & Fritsche, Ulrich & Waldhof, Gaby, 2017. "Theories, techniques and the formation of German business cycle forecasts. Evidence from a survey among professional forecasters," Working Papers 2, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    14. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    15. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
    16. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
    17. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    18. Giovanni Cicceri & Giuseppe Inserra & Michele Limosani, 2020. "A Machine Learning Approach to Forecast Economic Recessions—An Italian Case Study," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    19. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    20. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General
    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:euf:dispap:070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ECFIN INFO (email available below). General contact details of provider: https://edirc.repec.org/data/dg2ecbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.