IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/1076.html
   My bibliography  Save this paper

Reliability and heterogeneity of railway services

Author

Listed:
  • Vromans, M.J.C.M.
  • Dekker, R.
  • Kroon, L.G.

Abstract

Reliability is one of the key factors in transportation, both for passengers and for cargo. This paper examines reliability in public railway systems. Reliability of railway services is a complex matter, since there are many causes for disruptions and at least as many causes for delays to spread around in space and time. One way to increase the reliability is to reduce the propagation of delays due to the interdependencies between trains. In this paper we attempt to decrease these interdependencies by reducing the running time differences per track section, i.e. by creating more homogeneous timetables. Because of the complexity of railway systems, we use network wide simulation for the analysis of the alternative timetables. We report on both theoretical and practical cases. Besides a comparison of different timetables, also general timetabling principles are deduced.

Suggested Citation

  • Vromans, M.J.C.M. & Dekker, R. & Kroon, L.G., 2003. "Reliability and heterogeneity of railway services," ERIM Report Series Research in Management ERS-2003-090-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:1076
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1076/ERS%202003%20090%20LIS.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huisman, Tijs & Boucherie, Richard J. & van Dijk, Nico M., 2002. "A solvable queueing network model for railway networks and its validation and applications for the Netherlands," European Journal of Operational Research, Elsevier, vol. 142(1), pages 30-51, October.
    2. A. Higgins & E. Kozan, 1998. "Modeling Train Delays in Urban Networks," Transportation Science, INFORMS, vol. 32(4), pages 346-357, November.
    3. M Carey & S Carville, 2000. "Testing schedule performance and reliability for train stations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(6), pages 666-682, June.
    4. Carey, Malachy & Carville, Sinead, 2003. "Scheduling and platforming trains at busy complex stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 195-224, March.
    5. Carey, Malachy, 1999. "Ex ante heuristic measures of schedule reliability," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 473-494, September.
    6. Carey, Malachy & Kwiecinski, Andrzej, 1995. "Properties of expected costs and performance measures in stochastic models of scheduled transport," European Journal of Operational Research, Elsevier, vol. 83(1), pages 182-199, May.
    7. Huisman, Tijs & Boucherie, Richard J., 2001. "Running times on railway sections with heterogeneous train traffic," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 271-292, March.
    8. Carey, Malachy, 1998. "Optimizing scheduled times, allowing for behavioural response," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 329-342, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fredrik Ljunggren & Kristian Persson & Anders Peterson & Christiane Schmidt, 2021. "Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path," Public Transport, Springer, vol. 13(3), pages 597-623, October.
    2. Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.
    3. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    4. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    5. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    6. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    7. Maosheng Li & Zhengqiu Liu & Yonghong Zhang & Weijun Liu & Feng Shi, 2017. "Distribution analysis of train interval journey time employing the censored model with shifting character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 715-733, March.
    8. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    9. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    10. Parbo, Jens & Nielsen, Otto A. & Prato, Carlo G., 2018. "Reducing passengers’ travel time by optimising stopping patterns in a large-scale network: A case-study in the Copenhagen Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 197-212.
    11. Chen, Hong & Cullinane, Kevin & Liu, Nan, 2017. "Developing a model for measuring the resilience of a port-hinterland container transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 282-301.
    12. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    13. Zhichao Cao & Zhenzhou Yuan & Silin Zhang, 2016. "Performance Analysis of Stop-Skipping Scheduling Plans in Rail Transit under Time-Dependent Demand," IJERPH, MDPI, vol. 13(7), pages 1-23, July.
    14. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    15. Oskar Fr�idh & Hans Sipil� & Jennifer Warg, 2014. "Capacity for express trains on mixed traffic lines," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 2(1), pages 17-27, February.
    16. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    17. Chihmao Hsieh & Sérgio Giovanetti Lazzarini & Jackson A. Nickerson & Marcio Laurini, 2010. "Does Ownership Affect the Variability of the Production Process? Evidence from International Courier Services," Organization Science, INFORMS, vol. 21(4), pages 892-912, August.
    18. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    19. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    20. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    21. Hyun Kim & Yena Song, 2018. "An integrated measure of accessibility and reliability of mass transit systems," Transportation, Springer, vol. 45(4), pages 1075-1100, July.
    22. Solinen, Emma & Palmqvist, Carl-William, 2023. "Development of new railway timetabling rules for increased robustness," Transport Policy, Elsevier, vol. 133(C), pages 198-208.
    23. Zhang, Jiamin, 2015. "Analysis on line capacity usage for China high speed railway with optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 336-349.
    24. Simon Bull & Jesper Larsen & Richard M. Lusby & Natalia J. Rezanova, 2019. "Optimising the travel time of a line plan," 4OR, Springer, vol. 17(3), pages 225-259, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    2. Yuan, Jianxin & Hansen, Ingo A., 2007. "Optimizing capacity utilization of stations by estimating knock-on train delays," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 202-217, February.
    3. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    4. Mu, Shi & Dessouky, Maged, 2013. "Efficient dispatching rules on double tracks with heterogeneous train traffic," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 45-64.
    5. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    6. Wu, Cheng-Lung & Caves, Robert E., 2002. "Towards the optimisation of the schedule reliability of aircraft rotations," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 419-426.
    7. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    8. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    9. Maosheng Li & Zhengqiu Liu & Yonghong Zhang & Weijun Liu & Feng Shi, 2017. "Distribution analysis of train interval journey time employing the censored model with shifting character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 715-733, March.
    10. Zhang, Jiamin, 2015. "Analysis on line capacity usage for China high speed railway with optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 336-349.
    11. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    12. Carey, Malachy & Crawford, Ivan, 2007. "Scheduling trains on a network of busy complex stations," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 159-178, February.
    13. Carey, Malachy, 1999. "Ex ante heuristic measures of schedule reliability," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 473-494, September.
    14. Huang, Ping & Wen, Chao & Fu, Liping & Lessan, Javad & Jiang, Chaozhe & Peng, Qiyuan & Xu, Xinyue, 2020. "Modeling train operation as sequences: A study of delay prediction with operation and weather data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Krüger, Niclas A. & Vierth , Inge & Fakhraei Roudsari, Farzad, 2013. "Spatial, temporal and size distribution of freight train delays: evidence from Sweden," Working papers in Transport Economics 2013:8, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    16. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    17. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    18. Zhongcan Li & Ping Huang & Chao Wen & Yixiong Tang & Xi Jiang, 2020. "Predictive models for influence of primary delays using high‐speed train operation records," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1198-1212, December.
    19. Meester, Ludolf E. & Muns, Sander, 2007. "Stochastic delay propagation in railway networks and phase-type distributions," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 218-230, February.
    20. Maosheng Li & Qing Huang & Lixuan Yao & Yongliang Wang, 2020. "Suitability Evaluation of a Train’s Scheduled Section Travel Time," Sustainability, MDPI, vol. 12(6), pages 1-15, March.

    More about this item

    Keywords

    heterogeneity; railways; reliability; simulation; transportation;
    All these keywords.

    JEL classification:

    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.