IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v77y2015icp336-349.html
   My bibliography  Save this article

Analysis on line capacity usage for China high speed railway with optimization approach

Author

Listed:
  • Zhang, Jiamin

Abstract

The purpose for the analysis of capacity usage is to utilize the rail infrastructure in a more efficient and practical way. The practical and theoretical challenge of the rail capacity is its dynamics and uncertainty, which are common in China and elsewhere. Based on the capacity balance, a train service-demand intention set (TSDIS) at High-Speed Rail (HSR) line (t@l-TSDIS) is defined, which takes the number of trains, the average speed, the heterogeneity and the stability as the core elements for the capacity usage. For dynamics and uncertainty, we update the norm for capacity measure as the time needed to fulfill the task list t@l-TSDIS. Then we develop the objectives and constraints for the Mathematical Program for Line Capacity (MPLC), which aims at minimization of heterogeneity and running time as well as maximization of reliability. For solving MPLC, the Pareto Archived Evolutionary Strategy (PAES) and fuzzy logic penalty function are introduced. Furthermore we propose a rolling optimization tactic oriented by the practical problem, which combines the improved Pareto Archived Evolutionary Strategy (iPAES) with an interactive technique. In a case study, we apply the proposed ideas and methodology to Beijing-Shanghai HSR (BS-HSR) line much closer to the railway practice. By using the computer language C# to compile the Console program, Pareto optimized results for MPLC are achieved, including the standard and practical values for the heterogeneity indices, reliability indices and running time indices. We also discuss the sensitivity of the heterogeneity index. This research demonstrates that it is useful to analyze the line capacity usage for China HSR with the proposed optimization approach.

Suggested Citation

  • Zhang, Jiamin, 2015. "Analysis on line capacity usage for China high speed railway with optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 336-349.
  • Handle: RePEc:eee:transa:v:77:y:2015:i:c:p:336-349
    DOI: 10.1016/j.tra.2015.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrod, Steven, 2009. "Capacity factors of a mixed speed railway network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 830-841, September.
    2. Zwaneveld, Peter J. & Kroon, Leo G. & van Hoesel, Stan P. M., 2001. "Routing trains through a railway station based on a node packing model," European Journal of Operational Research, Elsevier, vol. 128(1), pages 14-33, January.
    3. Delorme, Xavier & Gandibleux, Xavier & Rodriguez, Joaquin, 2004. "GRASP for set packing problems," European Journal of Operational Research, Elsevier, vol. 153(3), pages 564-580, March.
    4. Huisman, Tijs & Boucherie, Richard J., 2001. "Running times on railway sections with heterogeneous train traffic," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 271-292, March.
    5. Burdett, R.L. & Kozan, E., 2006. "Techniques for absolute capacity determination in railways," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 616-632, September.
    6. Vromans, Michiel J.C.M. & Dekker, Rommert & Kroon, Leo G., 2006. "Reliability and heterogeneity of railway services," European Journal of Operational Research, Elsevier, vol. 172(2), pages 647-665, July.
    7. Dejan Jovanović & Patrick T. Harker, 1991. "Tactical Scheduling of Rail Operations: The SCAN I System," Transportation Science, INFORMS, vol. 25(1), pages 46-64, February.
    8. Abril, M. & Barber, F. & Ingolotti, L. & Salido, M.A. & Tormos, P. & Lova, A., 2008. "An assessment of railway capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 774-806, September.
    9. E. R. Petersen, 1974. "Over-the-Road Transit Time for a Single Track Railway," Transportation Science, INFORMS, vol. 8(1), pages 65-74, February.
    10. Carey, Malachy & Carville, Sinead, 2003. "Scheduling and platforming trains at busy complex stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 195-224, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Line Blander Reinhardt & David Pisinger & Richard Lusby, 2018. "Railway capacity and expansion analysis using time discretized paths," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 712-739, December.
    2. Lu Yang & Leishan Zhou & Hanxiao Zhou & Chang Han & Wenqiang Zhao, 2023. "A Lagrangian Method for Calculation of Passing Capacity on a Railway Hub Station," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    3. Fredrik Ljunggren & Kristian Persson & Anders Peterson & Christiane Schmidt, 2021. "Railway timetabling: a maximum bottleneck path algorithm for finding an additional train path," Public Transport, Springer, vol. 13(3), pages 597-623, October.
    4. Bi, Mingkai & He, Shiwei & Xu, Wangtu (Ato), 2019. "Express delivery with high-speed railway: Definitely feasible or just a publicity stunt," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 165-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega Riejos, Francisco A. & Barrena, Eva & Canca Ortiz, J. David & Laporte, Gilbert, 2016. "Analyzing the theoretical capacity of railway networks with a radial-backbone topology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 83-92.
    2. Matthew E. H. Petering & Mojtaba Heydar & Dietrich R. Bergmann, 2016. "Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming," Transportation Science, INFORMS, vol. 50(3), pages 892-909, August.
    3. Yidong Wang & Rui Song & Shiwei He & Zilong Song, 2022. "Train Routing and Track Allocation Optimization Model of Multi-Station High-Speed Railway Hub," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    4. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    5. Richard Lusby & Jesper Larsen & David Ryan & Matthias Ehrgott, 2011. "Routing Trains Through Railway Junctions: A New Set-Packing Approach," Transportation Science, INFORMS, vol. 45(2), pages 228-245, May.
    6. Maosheng Li & Zhengqiu Liu & Yonghong Zhang & Weijun Liu & Feng Shi, 2017. "Distribution analysis of train interval journey time employing the censored model with shifting character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 715-733, March.
    7. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    8. Line Blander Reinhardt & David Pisinger & Richard Lusby, 2018. "Railway capacity and expansion analysis using time discretized paths," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 712-739, December.
    9. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    10. Li, Feng & Gao, Ziyou & Wang, David Z.W. & Liu, Ronghui & Tang, Tao & Wu, Jianjun & Yang, Lixing, 2017. "A subjective capacity evaluation model for single-track railway system with δ-balanced traffic and λ-tolerance level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 43-66.
    11. Masoud Yaghini & Mohammadreza Sarmadi & Nariman Nikoo & Mohsen Momeni, 2014. "Capacity Consumption Analysis Using Heuristic Solution Method for Under Construction Railway Routes," Networks and Spatial Economics, Springer, vol. 14(3), pages 317-333, December.
    12. Talebian, Ahmadreza & Zou, Bo, 2015. "Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the US," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 114-140.
    13. Bi, Mingkai & He, Shiwei & Xu, Wangtu (Ato), 2019. "Express delivery with high-speed railway: Definitely feasible or just a publicity stunt," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 165-187.
    14. Jovanović, Predrag & Pavlović, Norbert & Belošević, Ivan & Milinković, Sanjin, 2020. "Graph coloring-based approach for railway station design analysis and capacity determination," European Journal of Operational Research, Elsevier, vol. 287(1), pages 348-360.
    15. Burdett, RL, 2016. "Optimisation models for expanding a railway's theoretical capacity," European Journal of Operational Research, Elsevier, vol. 251(3), pages 783-797.
    16. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    17. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    18. Jingliu Xu & Zhimei Wang & Shangjun Yao & Jiarong Xue, 2022. "Train Operations Organization in High-Speed Railway Station Considering Variable Configuration," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    19. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    20. Oskar Fr�idh & Hans Sipil� & Jennifer Warg, 2014. "Capacity for express trains on mixed traffic lines," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 2(1), pages 17-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:77:y:2015:i:c:p:336-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.