IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2003-28.html
   My bibliography  Save this paper

Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases

Author

Listed:
  • Paolo Battocchio
  • Francesco Menoncin
  • Olivier Scaillet

Abstract

In a financial market with one riskless asset and n risky assets following geometric Brownian motions, we solve the problem of a pension fund maximizing the expected CRRA utility of its terminal wealth. By considering a stochastic death time for a subscriber, we solve a unique problem for both accumulation and decumulation phases. We show that the optimal asset allocation during these two phases must be different. In particular, during the first phase the investment in the risky assets should decrease through time to meet future contractual pension payments while, during the second phase, the risky investment should increase through time because of closeness of death time. Our findings also suggest that it is not optimal to manage the two phases separately.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Paolo Battocchio & Francesco Menoncin & Olivier Scaillet, 2003. "Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases," THEMA Working Papers 2003-28, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2003-28
    as

    Download full text from publisher

    File URL: http://www.u-cergy.fr/IMG/documents//2003-28Scaillet.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard, Scott F., 1975. "Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model," Journal of Financial Economics, Elsevier, vol. 2(2), pages 187-203, June.
    2. Bodie, Zvi & Merton, Robert C. & Samuelson, William F., 1992. "Labor supply flexibility and portfolio choice in a life cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 427-449.
    3. Menoncin, Francesco, 2002. "Optimal portfolio and background risk: an exact and an approximated solution," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 249-265, October.
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Paolo BATTOCCHIO & Francesco MENONCIN, 2002. "Optimal Pension Management under Stochastic Interest Rates, Wages, and Inflation," LIDAM Discussion Papers IRES 2002021, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    6. Charupat, Narat & Milevsky, Moshe A., 2002. "Optimal asset allocation in life annuities: a note," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 199-209, April.
    7. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    8. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    9. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    10. Moshe Arye Milevsky, 2001. "Optimal Annuitization Policies," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(1), pages 57-69.
    11. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2001. "Minimization of risks in pension funding by means of contributions and portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 35-45, August.
    12. Sundaresan, Suresh & Zapatero, Fernando, 1997. "Valuation, Optimal Asset Allocation and Retirement Incentives of Pension Plans," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 631-660.
    13. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    2. Ayşegül İşcanog̃lu-Çekiç, 2016. "An Optimal Turkish Private Pension Plan with a Guarantee Feature," Risks, MDPI, vol. 4(3), pages 1-12, June.
    3. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    4. Menoncin, Francesco & Regis, Luca, 2017. "Longevity-linked assets and pre-retirement consumption/portfolio decisions," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 75-86.
    5. Jangho Park & Rebecca Stockbridge & Güzin Bayraksan, 2021. "Variance reduction for sequential sampling in stochastic programming," Annals of Operations Research, Springer, vol. 300(1), pages 171-204, May.
    6. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    7. Menoncin, Francesco, 2005. "Cyclical risk exposure of pension funds: A theoretical framework," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 469-484, June.
    8. Oyakhilome IBHAGUI, 2017. "Optimal Asset Allocation of a Pension Fund: Does The Fear of Regret Matter?," Journal of Economics Library, KSP Journals, vol. 4(2), pages 130-159, June.
    9. Le Courtois, Olivier & Menoncin, Francesco, 2015. "Portfolio optimisation with jumps: Illustration with a pension accumulation scheme," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 127-137.
    10. Katarzyna Romaniuk, 2007. "The optimal asset allocation of the main types of pension funds: a unified framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 113-128, December.
    11. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    12. Chavez-Bedoya, Luis & Castaneda, Ranu, 2021. "A benchmarking approach to track and compare administrative charges on flow and balance in individual account pension systems," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 7-23.
    13. Ankush Agarwal & Christian-Oliver Ewald & Yongjie Wang, 2023. "Hedging longevity risk in defined contribution pension schemes," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    14. Francesco Menoncin & Luca Regis, 2015. "Longevity assets and pre-retirement consumption/portfolio decisions," Working Papers 2/2015, IMT School for Advanced Studies Lucca, revised May 2015.
    15. Pierre Devolder & Susanna Levantesi & Massimiliano Menzietti, 2021. "Automatic balance mechanisms for notional defined contribution pension systems guaranteeing social adequacy and financial sustainability: an application to the Italian pension system," Annals of Operations Research, Springer, vol. 299(1), pages 765-795, April.
    16. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    17. Luciano, Elisa & Regis, Luca, 2014. "Efficient versus inefficient hedging strategies in the presence of financial and longevity (value at) risk," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 68-77.
    18. Schmeck, Maren Diane & Schmidli, Hanspeter, 2019. "Mortality Options: the Point of View of an Insurer," Center for Mathematical Economics Working Papers 616, Center for Mathematical Economics, Bielefeld University.
    19. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.
    20. Francesco Menoncin & Olivier Scaillet, 2003. "Mortality Risk and Real Optimal Asset Allocation for Pension Funds," FAME Research Paper Series rp101, International Center for Financial Asset Management and Engineering.
    21. Schmeck, Maren Diane & Schmidli, Hanspeter, 2021. "Mortality options: The point of view of an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 98-115.
    22. Mehmet BÖLÜKBAÞ, 2017. "18. International symposium on econometrics operation research and statistics," Journal of Economics Library, KSP Journals, vol. 4(3), pages 402-403, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Menoncin & Olivier Scaillet, 2003. "Mortality Risk and Real Optimal Asset Allocation for Pension Funds," FAME Research Paper Series rp101, International Center for Financial Asset Management and Engineering.
    2. Francesco, MENONCIN, 2003. "Optimal Real Consumption and Asset Allocation for a HARA Investor with Labour Income," LIDAM Discussion Papers IRES 2003015, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    3. Menoncin, Francesco, 2005. "Cyclical risk exposure of pension funds: A theoretical framework," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 469-484, June.
    4. Katarzyna Romaniuk, 2007. "The optimal asset allocation of the main types of pension funds: a unified framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 113-128, December.
    5. Menoncin, Francesco, 2008. "The role of longevity bonds in optimal portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 343-358, February.
    6. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    7. Geoffrey H. Kingston, 2000. "Efficient Timing of Retirement," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 3(4), pages 831-840, October.
    8. Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.
    9. Geoffrey H. Kingston, 2000. "Efficient Timing of Retirement," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 3(4), pages 831-840, October.
    10. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    11. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    12. Wang, Suxin & Lu, Yi & Sanders, Barbara, 2018. "Optimal investment strategies and intergenerational risk sharing for target benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 1-14.
    13. Paweł Rokita & Radosław Pietrzyk & Łukasz Feldman, 2014. "Multiobjective Optimization of Financing Household Goals with Multiple Investment Programs," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(2), pages 243-268, March.
    14. Moshe Milevsky, 2004. "A diffusive wander through human life," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 21-23.
    15. repec:syd:wpaper:9903 is not listed on IDEAS
    16. Huaxiong Huang & Moshe A. Milevsky & Jin Wang, 2008. "Portfolio Choice and Life Insurance: The CRRA Case," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(4), pages 847-872, December.
    17. Horneff, Wolfram J. & Maurer, Raimond H. & Mitchell, Olivia S. & Dus, Ivica, 2008. "Following the rules: Integrating asset allocation and annuitization in retirement portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 396-408, February.
    18. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    19. Horneff, Wolfram J. & Maurer, Raimond H. & Stamos, Michael Z., 2008. "Life-cycle asset allocation with annuity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3590-3612, November.
    20. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    21. Horneff, Wolfram J. & Maurer, Raimond H. & Mitchell, Olivia S. & Stamos, Michael Z., 2009. "Asset allocation and location over the life cycle with investment-linked survival-contingent payouts," Journal of Banking & Finance, Elsevier, vol. 33(9), pages 1688-1699, September.

    More about this item

    JEL classification:

    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2003-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Marcassa (email available below). General contact details of provider: https://edirc.repec.org/data/themafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.