IDEAS home Printed from https://ideas.repec.org/p/ctl/louvir/2003015.html
   My bibliography  Save this paper

Optimal Real Consumption and Asset Allocation for a HARA Investor with Labour Income

Author

Listed:
  • Francesco, MENONCIN

    (Universita de Brescia, ITALY)

Abstract

In this paper, we take into account a very general setting with : (i) a set of stochastic investment opportunities, (ii) a set of risky assets, (iii) a riskless asset paying a stochastic interest rate, (iv) a stochastic inflation risk, (v) stochastic labor income , and (vi) HARA preferences. We compute a quasi-explicit solution for both the optimal consumption and asset allocation. This solution is based on two changes in the probability measure. We also show that the investor behaves as if he could rely on his wealth augmented by the expected value of all his “forward real labor incomes”

Suggested Citation

  • Francesco, MENONCIN, 2003. "Optimal Real Consumption and Asset Allocation for a HARA Investor with Labour Income," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2003015, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  • Handle: RePEc:ctl:louvir:2003015
    as

    Download full text from publisher

    File URL: http://sites.uclouvain.be/econ/DP/IRES/2003-15.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    3. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(01), pages 63-91, March.
    4. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    7. Bodie, Zvi & Merton, Robert C. & Samuelson, William F., 1992. "Labor supply flexibility and portfolio choice in a life cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 427-449.
    8. Damgaard, Anders & Fuglsbjerg, Brian & Munk, Claus, 2003. "Optimal consumption and investment strategies with a perishable and an indivisible durable consumption good," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 209-253, November.
    9. Menoncin, Francesco, 2002. "Optimal portfolio and background risk: an exact and an approximated solution," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 249-265, October.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    12. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    13. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.
    14. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2001. "Pensionmetrics: stochastic pension plan design and value-at-risk during the accumulation phase," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 187-215, October.
    15. Paolo BATTOCCHIO & Francesco MENONCIN, 2002. "Optimal Pension Management under Stochastic Interest Rates, Wages, and Inflation," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2002021, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    16. Lioui, Abraham & Poncet, Patrice, 2001. "On optimal portfolio choice under stochastic interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1841-1865, November.
    17. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    18. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Huiling & Zhang, Ling & Chen, Hua, 2015. "Nash equilibrium strategies for a defined contribution pension management," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 202-214.

    More about this item

    Keywords

    Asset Allocation; Inflation risk; Stochastic labour income; Stochastic investment opportunities; Feynman-Kac theorem;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ctl:louvir:2003015. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Virginie LEBLANC). General contact details of provider: http://edirc.repec.org/data/iruclbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.