IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The role of longevity bonds in optimal portfolios

  • Francesco Menoncin

A longevity bond pays coupons which are proportional to the survival rate of a given population. In such a way the longevity risk becomes hedgeable on the financial market. In our model there are: (i) a longevity bond as a derivative on the population survival rate, (ii) a bond as a derivative on the stochastic instantaneously riskless interest rate, and (iii) a stock. The investor maximizes the expected (CRRA) utility of his intertemporal consumption. In such a framework we demonstrate that the amount of wealth invested in the longevity bond reduces the portfolio weight of the bond without affecting neither the weight of the stock nor the weight of the riskless asset.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.unibs.it/on-line/dse/Home/Inevidenza/PaperdelDipartimento/documento4690.html
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Matteo Galizzi)


Download Restriction: no

Paper provided by University of Brescia, Department of Economics in its series Working Papers with number 0601.

as
in new window

Length:
Date of creation: 2006
Date of revision:
Handle: RePEc:ubs:wpaper:0601
Contact details of provider: Postal: Via S. Faustino 74/B, 25122 Brescia
Phone: +39-(0)30-2988704
Web page: http://www.unibs.it/atp/page.1019.0.0.0.atp?node=224

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. R. C. Merton, 1970. "Optimum Consumption and Portfolio Rules in a Continuous-time Model," Working papers 58, Massachusetts Institute of Technology (MIT), Department of Economics.
  2. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
  3. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
  4. Rudolf, Markus & Ziemba, William T., 2004. "Intertemporal surplus management," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 975-990, February.
  5. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
  6. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  7. Lioui, Abraham & Poncet, Patrice, 2001. "On optimal portfolio choice under stochastic interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1841-1865, November.
  8. Griselda Deelstra & Martino Grasselli & Pierre-Fran├žois Koehl, 2000. "Optimal investment strategies in a CIR framework," ULB Institutional Repository 2013/7594, ULB -- Universite Libre de Bruxelles.
  9. Hainaut, Donatien & Devolder, Pierre, 2007. "Management of a pension fund under mortality and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 134-155, July.
  10. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
  11. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-61.
  12. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
  13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-57, August.
  14. Simon Babbs & K. Nowman, 1998. "Econometric Analysis of a Continuous Time Multi-Factor Generalized Vasicek Term Structure Model: International Evidence," Asia-Pacific Financial Markets, Springer, vol. 5(2), pages 159-183, May.
  15. Richard, Scott F., 1975. "Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model," Journal of Financial Economics, Elsevier, vol. 2(2), pages 187-203, June.
  16. Wachter, Jessica A., 2003. "Risk aversion and allocation to long-term bonds," Journal of Economic Theory, Elsevier, vol. 112(2), pages 325-333, October.
  17. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  18. Menoncin, Francesco, 2002. "Optimal portfolio and background risk: an exact and an approximated solution," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 249-265, October.
  19. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(01), pages 63-91, March.
  20. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
  21. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 115-130, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ubs:wpaper:0601. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matteo Galizzi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.